

Bomba variable de pistones axiales A10VSO Serie 31

RS 92711

Edición: 10.2016 Reemplaza a: 01.2012

- ▶ Bomba de presión media de uso universal
- Tamaños nominales 18 hasta 140
- Presión nominal 280 bar
- Presión máxima 350 bar
- Circuito abierto

Características

- ► Bomba variable con accionamiento rotativo de pistones axiales en construcción de placa inclinada para accionamientos hidrostáticos en circuito abierto.
- ► El caudal es proporcional al número de revoluciones del accionamiento y a la cilindrada.
- ► Ajustando la placa inclinada se varía el caudal sin saltos.
- ▶ 2 conexiones de drenaje
- ▶ Buen comportamiento de aspiración
- ▶ Bajo nivel de ruido
- ► Vida útil elevada
- ► Optima relación potencia-peso
- Amplio programa del regulador
- ► Tiempo de regulación breve
- ► El arrastre es apropiado para el montaje adicional de bombas de engranaje y de pistones axiales hasta el mismo tamaño nominal, es decir, 100 % de arrastre.
- Apropiado para el funcionamiento con aceite mineral y fluidos hidráulicos HF

Contenido Código de identificación 2 Fluidos hidráulicos 4 Rango de presión de servicio Datos técnicos, unidad estándar 7 Datos técnicos, versión High Speed 8 Datos técnicos fluidos hidráulicos HF 8 DG - Ajuste de dos puntos, mando directo 10 DR - Regulador de presión 11 DRG - Regulador de presión, mando remoto 12 13 DFR / DFR1 - Regulador de presión y caudal DFLR - Regulador de presión, caudal y potencia 15 ED - Regulación de presión electrohidráulica 16 ER - Regulación de presión electrohidráulica 17 Dimensiones tamaño nominal 18 - 140 18 Dimensiones arrastre 36 42 Resumen de las posibilidades de montaje Bombas combinadas A10VSO + A10VSO 43 Enchufe para solenoides 44 Avisos de montaje 45 Indicaciones del proyecto 48 Indicaciones de seguridad 48

2

Código de identificación

01	02	03	04	05		06	07		08	09		10	1	.1	1:	2	13
	A10VS	0			1	31		_	٧								
Versi	ón									18	28	45	71	88	100	140	
01	Versión est	ándar (sin código)							•	•	•	•	•	•	•	
	Fluido hidr	áulico F	IFA, HFB, F	IFC (a exce	epción o	de Skydrol)				•	•	•	•	•	•	•	E
	Versión Hig	sh-Spee	d (esta opo	ción no afe	cta a la	s dimension	es extern	as)		_	-	•	•	-	•	•	Н
Unida	ad de piston	es axia	les														
02	Construcci	ón de pl	laca inclina	da, variable	e, presi	ón nominal 2	80 bar, pı	resión máx	ima 350 k	ar •	•	•	•	•	•	•	A10VS
Tipo	de servicio																
03	Bomba, cir	cuito ab	oierto	,													0
Tama	ño nominal	(TN)															
04	Cilindrada	geomét	rica, ver ta	bla de valo	res pág	gina 6 y 7				18	28	45	71	88	100	140	
Dispo	ositivo de re	gulació	n v aiuste							•		•	•			•	'
05	Variador de			do directo						•	•	•	•	•	•	•	DG
	Regulador	de pres	ión	hidrá	ulico					•	•	•	•	•	•	•	DR
	con regu	ılador d	e caudal	hidrá	ulico :	X-T abiertas				•	•	•	•	•	•	•	DFR
		X-T cerradas; con función de lavado						•	•	•	•	•	•	•	DFR1		
	con cort	e de pr	esión	hidrá	ulico	mando remo	to			•	•	•	•	•	•	•	DRG
				elécti	rico	identificación	negativa	<i>U</i> = 12 V		•	•	•	•	•	•	•	ED71
								<i>U</i> = 24 V		•	•	•	•	•	•	•	ED72
				elécti	rico i	identificación	positiva	<i>U</i> = 12 V		•	•	•	•	•	•	•	ER71
			. ,					U = 24 V		•	•	•	•	•	•	•	ER72
	regulador o	ae poter	ncia, cauda	l y presion							•	•	•	•	•	•	DFLR
Serie	1																
06	Serie 3, índ	dice 1										-					31
Senti	do de giro			,								-					
07	Mirando ha	icia eje	de acciona	miento				echa									R
				,			izqu	ierda									L
Mate	rial de junta																
08	FKM (flúor-		,														V
	NBR (caucl	no nitríl	ico) solo cı	uando se u	tilizan l	os fluidos hi	dráulicos	HFA, HFB,	, HFC (po	sición 0:	l; cóc	ligo de	e ped	ido "l	E")		Р
Eje d	e accionami	ento															
09	Eje dentad	o ANSI I	B92.1a		stándar					•	•	•	•	•	•	•	S
						" pero para 1				•	•	•	•	•	-	-	R
	Eje cilíndri DIN 6885	co con o	chaveta	torqu	e de ar	rastre máx.	admisible	(ver pågir	na 9)	•	•	•	•	•	•	•	P
											- 00	45			400	440	
Brida 10	ISO 3019-2							2 orificio	ic	18	28	45	71	88	100	140	А
10	100 0019-2	•						4 orificio		-	-	-		<u> </u>	 	•	В
Ca::		ا - اسماد							-		1	1		1			
Cone 11	Conexione			sca latera	al contr	anuesta							Τ_	Τ_		•	12
11	de fijación	-		sca idlefä	ar COIILI	αρυσδια				-	-	_	_	_	•	<u> </u>	42
	L										ட゙			_			_ 74

01	02	03	04	05		06	07		08	09	10	11	12	13
	A10VS	0			/	31		_	V					
	stre (posibi		e montaje	en la pág	ina 42)									

Brida ISO 3019-1	Cubo pa	ra eje dentado ¹⁾								
Diámetro	Diámetro)	18	28	45	71	88	100	140	
sin arrastre			•	•	•	•	•	•	•	N
82-2 (A)	5/8 in	9T 16/32DP	•	•	•	•	•	•	•	K
	3/4 in	11T 16/32DP	•	•	•	•	•	•	•	K
101-2 (B)	7/8 in	13T 16/32DP	-	•	•	•	•	•	•	K
	1 in	15T 16/32DP	-	-	•	•	•	•	•	K
127-2 (C)	1 1/4 in	14T 12/24DP	-	-	-	•	•	•	•	K
	1 1/2 in	17T 12/24DP	_	-	-	-	-	•	•	K:
152-4 (D)	1 3/4 in	13T 8/16DP	-	_	-	_	_	_	•	K:
(1) A (5)		705			T	1	1	1		
Ø63, sistema métrico 4 orificios	Chaveta	Ø25	-	•	•	•	•	•	•	K
Brida ISO 3019-2 Diámetro										
	3/4 in	11T 16/32DP	•	•	•	•	•	•	•	KE
Diámetro	3/4 in 7/8 in	11T 16/32DP 13T 16/32DP	•	•	•	•	•	•	•	KE
Diámetro 80, 2 orificios			-	•	•	<u> </u>	•	•	-	-
Diámetro 80, 2 orificios	7/8 in 1 in	13T 16/32DP	• - -	•	•	•	•	•	•	KI
Diámetro 80, 2 orificios 100, 2 orificios	7/8 in 1 in 1 1/4 in	13T 16/32DP 15T 16/32DP	- - -	•	•	•	•	•	•	KI

13	Sin enchufe (sin solenoide, solo para variadores hidráulicos, sin código)	•	•	•	•	•	•	•	
	Enchufe HIRSCHMANN – sin diodo extintor	•	•	•	•	•	•	•	Н

• = Disponible • = Previa solicitud - = No disponible

Avisos

- ▶ Tenga en cuenta las indicaciones de proyecto de la página 48.
- ▶ Además de los códigos de identificación, para el pedido deben proporcionarse los datos técnicos relevantes.

¹⁾ Cubo para eje dentado según ANSI B92.1a

²⁾ Los enchufes para otros componentes eléctricos pueden ser diferentes.

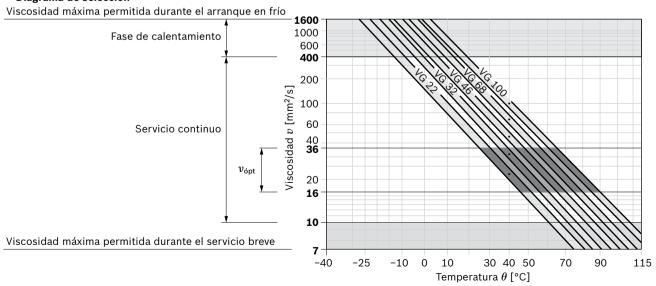
Fluidos hidráulicos

La bomba variable A10VSO está concebida para el funcionamiento con aceite mineral HLP según DIN 51524. Antes de la planificación, consulte las indicaciones y los requisitos de aplicación relativas a los fluidos hidráulicos en las siguientes fichas técnicas:

- ▶ 90220: Fluidos hidráulicos a base de aceite mineral e hidrocarburos afines
- ▶ 90221: Fluidos hidráulicos compatibles con el medio ambiente
- 90222: Fluidos hidráulicos difícilmente inflamables y libres de agua (HFDR/HFDU) (consultar los datos técnicos pertinentes en la ficha técnica 90255)
- ➤ 90223: Fluidos hidráulicos difícilmente inflamables y acuosos (HFAE, HFAS, HFB, HFC)
- ▶ 90225: Datos técnicos limitados para el funcionamiento
- con fluidos hidráulicos difícilmente inflamables y libres de agua (HFDR, HFDU, HFB, HFC), datos técnicos

Aclaración sobre la selección del fluido hidráulico

La elección del fluido se realiza de manera tal que, en el rango de temperatura de servicio, la viscosidad se encuentre en el rango óptimo ($v_{\text{ópt}}$ ver diagrama de selección).


Aviso

► La unidad de pistones axiales es adecuada para el funcionamiento con fluido hidráulico HF acuoso. Ver versión "E".

Viscosidad y temperatura del fluido hidráulico

	Viscosidad	Retén de eje	Temperatura ³⁾	Observación
Arranque en frío	$v_{\text{máx}} \le 1600 \text{ mm}^2/\text{s}$	NBR ²⁾	θ _{St} ≥ -40 °C	$t \le 3$ min, sin carga ($p \le 50$ bar), $n \le 1000$ min ⁻¹
		FKM	θ _{St} ≥ -25 °C	Diferencia de temperatura permitida entre la unidad de pistones axiales y el fluido hidráulico en el sistema máximo 25 K
Fase de calentamiento	ν = 1600 400 mm ² /s			$t \le 15 \text{ min}, p \le 0.7 \times p_{\text{nom}} \text{ y } n \le 0.5 \times n_{\text{nom}}$
Servicio	$v = 400 \dots 10 \text{ mm}^2/\text{s}^{1)}$	NBR ²⁾	θ ≤ +85 °C	medido en la conexión L, L₁
continuo		FKM	θ ≤ +110 °C	
	$v_{\rm opt}$ = 36 16 mm ² /s			rango óptimo de coeficiente de eficiencia y de viscosidad de servicio
Servicio breve	$v_{min} = 10 7 \text{ mm}^2/\text{s}$	NBR ²⁾	θ ≤ +85 °C	$t \le 3 \text{ min}, p \le 0.3 \times p_{\text{nom}}, \text{ medido en la conexión } \mathbf{L}, \mathbf{L_1}$
		FKM	θ ≤ +110 °C	

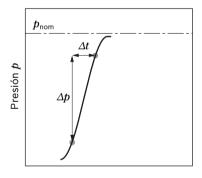
▼ Diagrama de selección

¹⁾ Corresponde, por ejemplo en el caso de VG 46, a un rango de temperatura de +4 °C hasta +85 °C (ver el diagrama de selección)

Versión EA10VSO...-P (para el funcionamiento con fluidos hidráulicos HFA, HFB, HFC)

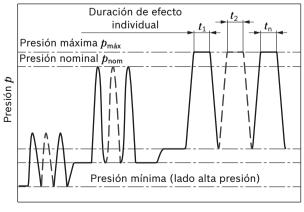
³⁾ Si la temperatura no se puede mantener por parámetros de servicio extremos, consultar.

Filtrado del fluido hidráulico


Cuanto más fino es el filtrado tanto mejor es la clase de pureza alcanzada para el fluido hidráulico y con ello aumenta la vida útil de la unidad de pistones axiales. Como mínimo debe garantizarse una clase de pureza de 20/18/15 según ISO 4406.

Para temperaturas muy altas del fluido hidráulico (máximo $110~^{\circ}$ C medido en la conexión **L, L₁**) se necesita como mínimo una clase de pureza 19/17/14~según ISO 4406. Consúltenos si no se pueden alcanzar las clases de pureza arriba mencionadas.

Rango de presión de servicio


Presión en la conexión de trabajo B		Definición
Presión nominal p_{nom}	280 bar	La presión nominal corresponde a la presión de dimensionamiento máxima.
Presión máxima $p_{máx}$	350 bar	La presión máxima corresponde a la presión de servicio máxima alcanzable den-
Duración de efecto individual	2 ms	tro de la duración de efecto individual. La suma de la duración de efectos indivi-
Duración de efectos totales	300 h	duales no puede sobrepasar la duración de efectos totales.
Presión mínima $p_{\rm B\ abs}$ (lado de alta presión)	10 bar ¹⁾	Presión mínima en el lado de alta presión (B) que es necesaria para evitar daños en la unidad de pistones axiales.
Velocidad de variación de presión $R_{\rm A\ m\acute{a}x}$	16000 bar/s	Es la velocidad máxima admisible para el aumento o descenso de presión durante una variación de presión sobre todo el rango de presión.
Presión en conexión de aspiración S (entrada)	
Presión mínima Estándar ps mín	0,8 bar absoluto	Presión mínima en conexión de aspiración S (entrada) que es necesaria para evitar daños en la unidad de pistones axiales. La presión mínima depende del número de revoluciones y de la cilindrada de la unidad de pistones axiales.
Presión máxima $p_{\text{S máx}}$	10 bar	
Presión de la carcasa en la conexión	L, L ₁	
Presión máxima $p_{\rm Lmáx}$	2 bar ¹⁾ absoluto	Máximo 0,5 bar superior a la presión de entrada en la conexión $\bf S$, pero no superior a $p_{\rm L\ m\acute{a}x}$. Se necesita una tubería de drenaje hacia el tanque.

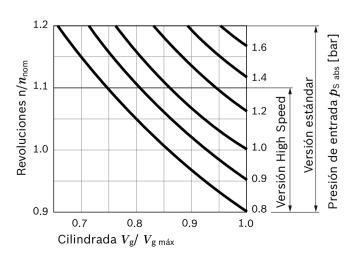
▼ Velocidad de variación de presión $R_{\rm A\ máx}$

Tiempo t

▼ Definición de presión

Tiempo t

Duración de efecto total = $t_1 + t_2 + ... + t_n$


1) Otros valores previa petición

Aviso

Rango de presión de servicio válido para el uso de fluidos hidráulicos con base de aceites minerales. Valor para otros fluidos hidráulicos, por favor consúltenos.

Presión de entrada mínima permitida en la conexión de aspiración S en caso de un aumento del número de revoluciones

Para evitar que la bomba sufra daños (cavitación), en la conexión de aspiración **S** debe garantizarse una presión de entrada mínima. La elevación de la presión de entrada mínima depende del número de revoluciones y de la cilindrada de la bomba variable.

El servicio permanente con exceso de revoluciones por encima de n_{nom} puede producir una reducción de la vida útil a causa de la erosión por cavitación.

Datos técnicos, unidad estándar

Tamaño nominal		TN		18	28	45	71	88	100	140
Cilindrada geométri	ca, por rotación	$V_{\sf g\ máx}$	cm ³	18	28	45	71	88	100	140
Máximo número de	con $V_{\sf g\ m\acute{a}x}$	n_{nom}	min ⁻¹	3300	3000	2600	2200	2100	2000	1800
revoluciones 1)	$con V_{\rm g} < V_{\rm g máx}^{2)}$	n _{máx adm}	min ⁻¹	3900	3600	3100	2600	2500	2400	2100
Caudal	con n_{nom} y $V_{gmáx}$	$q_{ m v\ máx}$	l/min	59	84	117	156	185	200	252
	con $n_{\rm E}$ = 1500 min $^{-1}$ y $V_{\rm g~máx}$	$q_{ m vE\ máx}$	l/min	27	42	68	107	132	150	210
Potencia	con $n_{nom},V_{gmáx}$	$P_{máx}$	kW	28	39	55	73	86	93	118
con Δp = 280 bar	con $n_{\rm E}$ = 1500 min $^{-1}$ y $V_{\rm g~máx}$	P _{E máx}	kW	12,6	20	32	50	62	70	98
Torque	Δp = 280 bar	T _{máx}	Nm	80	125	200	316	392	445	623
con $V_{gmáx}y$	Δp = 100 bar	T	Nm	30	45	72	113	140	159	223
Resistencia a la	S	c	Nm/rad	11087	22317	37500	71884	71884	121142	169437
torsión eje acciona-	R	с	Nm/rad	14850	26360	41025	76545	76545	-	_
miento	Р	c	Nm/rad	13158	25656	41232	80627	80627	132335	188406
Momento de inercia	accionamiento rotativo	$J_{\sf TW}$	kgm²	0,00093	0,0017	0,0033	0,0083	0,0083	0,0167	0,0242
Volumen de llenado		V	I	0,4	0,7	1,0	1,6	1,6	2,2	3,0
Masa sin arrastre (a	prox.)	m	lea.	12,9	18	23,5	35,2	35,2	49,5	65,4
Masa con arrastre (a	asa con arrastre (aprox.)		kg	14	19,3	25,1	38	38	55,4	74,4

Cálculo de las	caracterí	sticas		
Caudal	q_{v} =	$\frac{V_{g} \times n \times \eta_{v}}{1000}$		[l/min]
Torque	T =	$\frac{V_{g} \times \Delta p}{20 \times \pi \times \eta_{mh}}$		[Nm]
Potencia	P =	2 π × T × n 60000	$= \frac{q_{v} \times \Delta p}{600 \times \eta_{t}}$	– [kW]
Leyenda				
V_{g} Cilindrada	por rotaci	ón [cm³]		
Δp Presión dif	erencial [l	oar]		
n Revolucion	es [min ⁻¹]			
$\eta_{\scriptscriptstyle m V}$ Rendimien	ito volumé	trico		
η_{hm} Rendimien	to mecáni	co-hidráulico		
$\eta_{ m t}$ Rendimien	to total (η	$\eta_{\rm t} = \eta_{\rm v} \times \eta_{\rm hm}$		

Aviso

- Valores teóricos, sin rendimiento ni tolerancias: valores redondeados
- ▶ Superar los valores máximos o quedar por debajo de los mínimos puede ocasionar pérdida de funcionalidad, una reducción de la vida útil o la destrucción de la unidad de pistones axiales. Bosch Rexroth recomienda comprobar la carga mediante ensayo o cálculo/simulación y comparación con los valores admisibles.

¹⁾ Los valores son válidos:

[–] Para el rango de viscosidad óptimo de $v_{\rm ópt}$ = 36 hasta 16 mm²/s

⁻ Con fluidos hidráulicos a base de aceites minerales

⁻ Con presión absoluta $p_{
m abs}$ = 1 bar en la conexión de aspiración ${f S}$

²⁾ En caso de un aumento de las revoluciones hasta $n_{m\acute{a}x~adm}$ consultar el diagrama de la página 6.

Datos técnicos, versión High Speed (dimensiones externas según la unidad estándar)

Tamaño nominal		TN		45	71	100	140
Cilindrada geométrica,	por rotación	$V_{g\;máx}$	cm ³	45	71	100	140
Número de revolucio-	con $V_{ m gm\acute{a}x}$	n_{nom}	min ⁻¹	3000	2550	2300	2050
nes máximo ¹⁾	$con V_{\rm g} < V_{\rm g máx}^{2)}$	$n_{máx\;adm}$	min ⁻¹	3300	2800	2500	2200
Caudal	con n_{nom} y $V_{gmáx}$	$q_{ m v\ máx}$	l/min	135	178	230	287
Potencia	con n_{nom} , $V_{\text{g máx}}$ y Δp = 280 bar	P _{máx}	kW	63	83	107	134
Torque	Δp = 280 bar	T _{máx}	Nm	200	316	445	623
con $V_{gmáx}y$	Δp = 100 bar	T	Nm	72	113	159	223
Resistencia a la tor-	S	c	Nm/rad	37500	71884	121142	169537
sión eje accionamiento	R	c	Nm/rad	41025	76545	_	_
	Р	c	Nm/rad	41232	80627	132335	188406
Momento de inercia acc	cionamiento rotativo	J_{TW}	kgm²	0,0033	0,0083	0,0167	0,0242
/olumen de llenado		V	I	1,0	1,6	2,2	3,0
Masa sin arrastre (aprox	x.)		l	23,5	35,2	49,5	65,4
Masa con arrastre (apro	ox.)	m	kg	25,1	38	55,4	74,4

Aviso

- Valores teóricos, sin rendimiento ni tolerancias: valores redondeados
- Superar los valores máximos o quedar por debajo de los mínimos puede ocasionar pérdida de funcionalidad, una reducción de la vida útil o la destrucción de la unidad de pistones axiales. Bosch Rexroth recomienda comprobar la carga mediante ensayo o cálculo/simulación y comparación con los valores admisibles.

Datos técnicos fluidos hidráulicos HF, máximo número de revoluciones

Fluido hidráulico ³⁾ versión E	Tamaño nominal		TN		18	28	45	71	88	100	140
HFA	con presión nominal $p_{ m N}$	140 bar		min ⁻¹	2450	2250	1950	1650	1550	1500	1350
	con presión máxima $p_{ m máx}$	160 bar	n_{nom}	111111 -	2430	2230	1950	1650	1550	1500	1330
HFB	con presión nominal $p_{ m N}$	140 bar	-	min ⁻¹	2650	2400	2100	1760	1650	1600	1.450
	con presión máxima $p_{ m máx}$	160 bar	n_{nom}	min -	2000	2400	2100	1760	1650	1600	1450
HFC	con presión nominal $p_{ m N}$	175 bar		min ⁻¹	2650	2400	2100	1760	1650	1600	1.450
	con presión máxima $p_{ m máx}$	210 bar	- n_{nom}	min -	2650	2400	2100	1760	1650	1600	1450
Datos técnicos fluidos hidráu	ulicos HFD										
Polialquilenglicol HFDR, HFDU	con presión nominal $p_{ m N}$	280 bar		min ⁻¹	2650	2400	2100	1760	1650	1600	1450
Poliolester HFDU	con presión nominal $p_{ m N}$	280 bar	n_{nom}	min -	3300	3000	2600	2200	2100	2000	1800

¹⁾ Los valores son válidos:

[–] Con presión absoluta $p_{
m abs}$ = 1 bar en la conexión de aspiración ${f S}$

[–] Para un rango de viscosidad óptimo de $v_{\rm opt}$ = 36 hasta 16 mm²/s

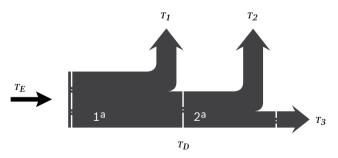
⁻ Con un fluido hidráulico a base de aceites minerales

²⁾ En caso de un aumento de las revoluciones hasta $n_{m\acute{a}x~adm}$ consultar el diagrama de la página 6.

³⁾ Para obtener más información sobre los fluidos hidráulicos HF consultar las fichas técnicas 90223 y 90225

Cargas admisibles de radial y axial sobre el eje de accionamiento

Tamaño nominal	↓ ^F ,	TN		18	28	45	71	88	100	140
Fuerza radial máxima con a/2	a/2 a/2 a	$F_{ extsf{q máx}}$	N	350	1200	1500	1900	1900	2300	2800
Fuerza axial máxima	F _{ax} +	$\pm F_{axmáx}$	N	700	1000	1500	2400	2400	4000	4800


Aviso

► Los valores indicados sin datos máximos y no están permitidos para el servicio permanente. ¡No está permitido el funcionamiento con carga de fuerzas radiales (piñones, correas trapezoidales)!

Torques de entrada y de arrastre admisibles

Tamaño nominal		18	28	45	71	88	100	140
Torque con $V_{g m\acute{a}x}$ y $\Delta p = 280 \text{ bar}^{1)}$	T _{máx} Nm	80	125	200	316	392	445	623
Torque de entrada en el eje de accior $máximo^{2)}$	namiento,	,						'
S	$T_{Emcute{a}x}$ Nm	124	198	319	626	626	1104	1620
	Ø in	3/4	7/8	1	1 1/4	1 1/4	1 1/2	1 3/4
R	$T_{Em\acute{a}x}$ Nm	160	250	400	644	644	_	_
	Ø in	3/4	7/8	1	1 1/4	1 1/4	_	_
Р	$T_{Emcute{a}x}$ Nm	88	137	200	439	439	857	1206
	Ø in	18	22	25	32	32	40	45
Torque de arrastre máximo								
S	$T_{A m lpha x}$ Nm	108	160	319	492	492	778	1266
R	T _{A máx} Nm	120	176	365	548	548	_	_
P	T _{A máx} Nm	88	137	200	439	439	778	1206

▼ Asignación de los torques

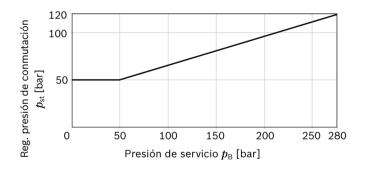
Torque 1ª bomba	T_1		
Torque 2 ^a bomba	T_2		
Torque 3 ^a bomba	T_3		
Torque de entrada	T_E	=	$T_1 + T_2 + T_3$
	T_E	<	T _{E máx}
Torque de arrastre	T_A	=	$T_2 + T_3$
	T_A	<	$T_{A \ mcute{a}x}$

- 1) Rendimiento no considerado
- 2) Para ejes de accionamiento libres de fuerzas transversales

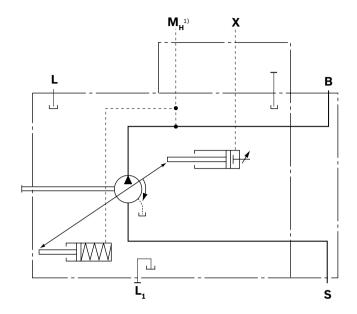
DG - Ajuste de dos puntos, mando directo

El ajuste de la bomba variable a un ángulo de giro mínimo se realiza conectando una presión de conmutación a la conexión **X**.

De esa manera los pistones de ajuste reciben directamente fluido de ajuste, para lo cual se necesita una presión de ajuste mínima $p_{\rm st} \ge 50$ bar.


La bomba variable solo puede conmutarse entre $V_{\mathrm{g\ m\'ax}}$ o $V_{\mathrm{g\ m\'in}}$.

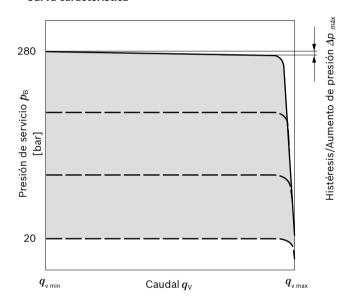
Hay que tener en cuenta que la presión de conmutación necesaria en la conexión ${\bf X}$ depende directamente de la presión de servicio ${\bf p}_{\rm B}$ de la conexión ${\bf B}$. (Ver la curva característica de la presión de conmutación).


La presión de conmutación máxima admisible es de 280 bar.

Presión de conmutación $p_{\rm st}$ en **X** = 0 bar $\triangle V_{\rm g \, máx}$ Presión de conmutación $p_{\rm st}$ en **X** \ge 50 bar $\triangle V_{\rm g \, min}$

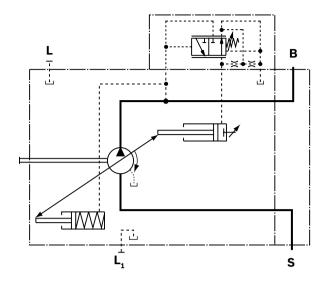
▼ Curva característica de la presión de conmutación

▼ Plano de conexiones

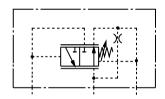


DR - Regulador de presión

El regulador de presión limita la presión máxima a la salida de la bomba dentro del área de regulación de la bomba variable. De ese modo la bomba variable suministra solo la cantidad de fluido hidráulico requerida por el consumidor. Si la presión de servicio supera al valor nominal de presión ajustado en la válvula de presión, la bomba la regula disminuyendo su cilindrada y con ello reduce la diferencia de regulación.


- Posición básica en estado sin presión: $V_{\rm g\ máx}$.
- Rango de ajuste¹⁾ para la regulación de presión continua de 20 a 280 bar.
 El estándar es 280 bar.

▼ Curva característica



Curva característica valida con n_1 = 1500 min⁻¹ y θ_{fluid} = 50 °C.

▼ Plano de conexiones tamaño nominal de 18 hasta 100

▼ Plano de conexiones tamaño nominal 140

Datos del regulador

TN		18	28	45	71	88	100	140
Aumento de la presión	∆ <i>p</i> [bar]	4	4	6	8	9	10	12
Histéresis y exactitud de repetición	<i>∆p</i> [bar]			r	náxim	0 3		
Consumo de fluido de mando	[l/min]			máx	imo ap	orox. 3		

Para evitar averías en la bomba y en el sistema este es el rango de ajuste admisible y no debe superarse.
 La posibilidad de ajuste de la válvula es mayor.

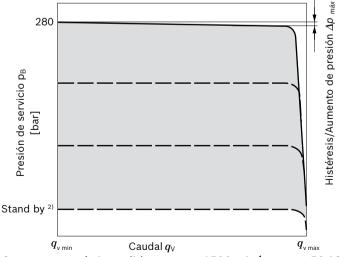
DRG - Regulador de presión, mando remoto

Con el regulador de presión por mando remoto se realiza una limitación de presión LS mediante una válvula limitadora de presión dispuesta de forma separada. De esa manera se puede ajustar el valor de regulación de presión deseado por debajo de la presión ajustada en el regulador de presión. Regulador de presión DR, ver página 11. Para el mando remoto, en la conexión ${\bf X}$ se coloca una válvula limitadora de presión externa; no obstante, dicha válvula no se incluye en el volumen de suministro del regulador DRG. En el caso de una presión diferencial de 20 bar Δp (ajuste estándar), la cantidad de fluido en la conexión ${\bf X}$ se eleva aprox. a 1,5 l/min. Si se desea otro ajuste (rango 10 a 22 bar), indicar claramente por escrito.

Como válvula limitadora de presión separada (1) recomendamos:

Mando directo, hidráulica o proporcional eléctrico y adecuada para la cantidad de fluido de mando mencionada arriba.

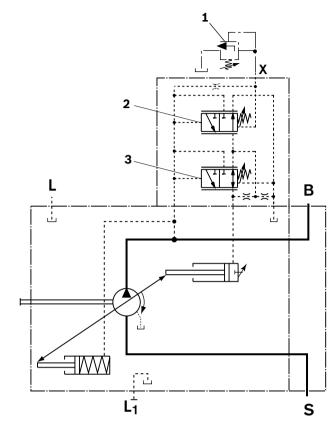
La longitud de la tubería no debe sobrepasar los 2 m.


- ► Posición básica en estado sin presión: V_{g máx}.
- ► Rango de ajuste¹⁾ para la regulación de presión de 20 a 280 bar (3).

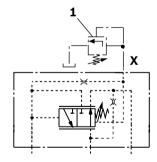
El estándar es 280 bar.

► Rango de ajuste para la presión diferencial 10 - 22 bar (2) El estándar es 20 bar.

Al descargar la conexión \mathbf{X} hacia el tanque se genera una presión de cilindrada nula ("stand by") que se encuentra aprox. de 1 a 2 bar por encima de la presión diferencial definida Δp , para lo cual no se tienen en cuenta otras influencias del sistema.


▼ Curva característica DRG

Curva característica valida con $n_1 = 1500 \text{ min}^{-1} \text{ y } t_{\text{fluid}} = 50 \text{ °C}.$


- Para evitar averías en la bomba y en el sistema este es el rango de ajuste admisible y no debe superarse.
 La posibilidad de ajuste de la válvula es mayor.
- 2) Presión de cilindrada nula a partir del ajuste de presión Δp en el regulador (2)

▼ Plano de conexiones DRG tamaño nominal de 18 hasta 100

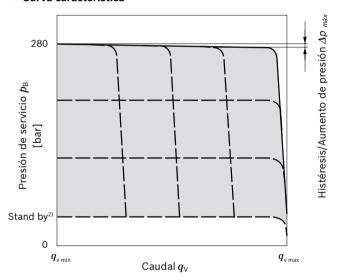
- **1** La válvula limitadora de presión separada y la tubería no se incluyen en el volumen de suministro.
- 2 Corte de presión por mando remoto (G).
- 3 Regulador de presión (DR)

▼ Plano de conexiones tamaño nominal 140

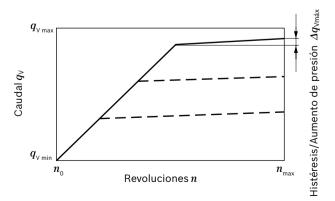
Datos del regulador DRG

TN		18	28	45	71	88	100	140
Histéresis y exactitud de repetición	∆ <i>p</i> [bar]		máximo 4					
Consumo de fluido de mando	[l/min]			máxii	mo api	rox. 4,	5	

DFR / DFR1 - Regulador de presión y caudal

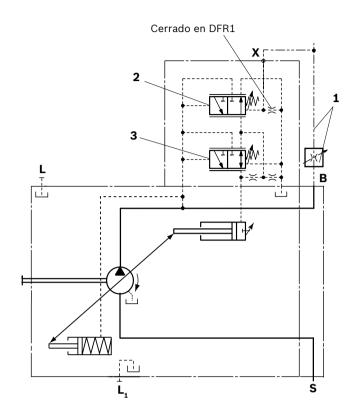

Además de la función de regulación de presión (ver página 11), mediante un estrangulador ajustable (por ejemplo, válvula direccional) también se reduce la presión diferencial antes y después del estrangulador, lo cual regula el caudal de la bomba. La bomba suministra la cantidad de fluido que realmente necesita el consumidor. En todas las combinaciones de regulador, la reducción $V_{\rm g}$ tiene prioridad.

- Posición básica en estado sin presión: $V_{\rm g\ máx}$.
- Rango de ajuste¹⁾ hasta 280 bar.
- ▶ Datos del regulador de presión, ver página 11

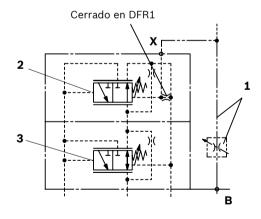

Aviso

► La versión DFR1 no tiene descarga de X hacia el tanque. Por lo tanto, la descarga de LS tiene que realizarse en el sistema. Además, debido a la función de lavado del regulador de caudal en la versión DFR1, la válvula de mando tiene que garantizar una descarga suficiente de la tubería X.

▼ Curva característica



▼ Curva característica con número de revoluciones variable



Curva característica valida con n_1 = 1500 min⁻¹ y θ_{fluid} = 50 °C.

▼ Plano de conexiones DFR tamaño nominal de 18 a 100

▼ Plano de conexiones tamaño nominal 140

- **1** El estrangulador de medición (bloque de mando) y la tubería no se incluyen en el volumen de suministro.
- 2 Regulador de caudal (FR).
- 3 Regulador de presión (DR)

Para obtener más información, consultar la página 14

- Para evitar averías en la bomba y en el sistema este es el rango de ajuste admisible y no debe superarse.
 La posibilidad de ajuste de la válvula es mayor.
- Presión de cilindrada nula a partir del ajuste de presión Δp en el regulador (2)

14 **A10VSO Serie 31** | Bomba variable de pistones axiales DFR / DFR1 – Regulador de presión y caudal

Presión diferencial Δp :

► Ajuste estándar: 14 bar Si se desea otro ajuste, indicarlo claramente por escrito.

▶ Rango de ajuste: 14 bar hasta 22 bar

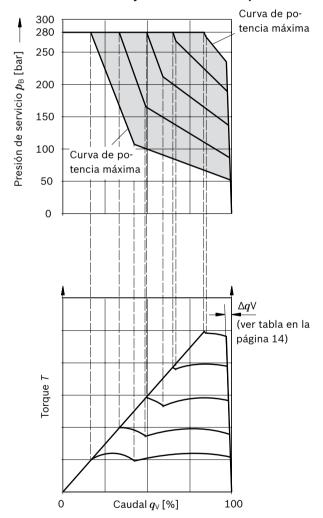
Al descargar la conexión \mathbf{X} hacia el tanque se ajusta una presión de cilindrada nula ("stand by") de aprox. 1 a 2 bar por encima de la presión diferencial definida Δp , para lo cual no se tienen en cuenta otras influencias del sistema.

Datos del regulador

Datos del regulador de presión DR, ver página 11. Variación de caudal máxima medida para con el número de revoluciones del accionamiento n = 1500 min⁻¹.

TN		18	28	45	71	88	100	140
Variación de caudal	$\Delta q_{Vmcute{a}x}$ [l/min]	0,9	1,0	1,8	2,8	3,4	4,0	6,0
Histéresis y exactitud de repetición	Δp [bar]			r	náximo	o 4		
Consumo de fluido de mando	[l/min]			imo ar áximo		,		

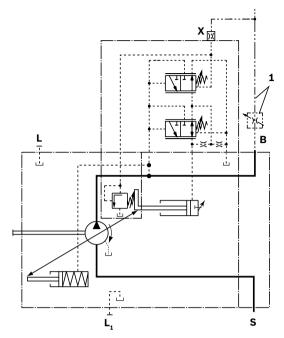
DFLR - Regulador de presión, caudal y potencia

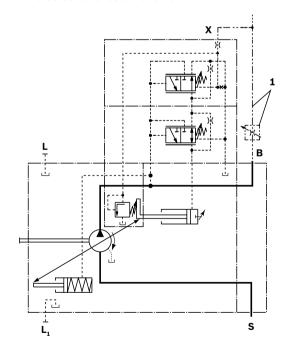

Presentación del regulador de presión como DR, ver página 11.

Presentación del regulador de caudal como DFR1, ver página 13.

Para alcanzar un torque de accionamiento constante se modifica el ángulo variable de la bomba de pistones axiales en función de la presión de servicio y, con ello, su caudal, de manera que el caudal y la presión del producto se mantengan constantes.

Es posible la regulación de caudal por debajo de la curva característica de potencia.


▼ Curva característica y característica de torque


Si el comienzo de regulación es < 50 bar, consultar.

La característica de potencia se ajusta en fábrica, indicar claramente por escrito, por ejemplo, 20 kW con 1500 min⁻¹

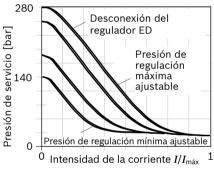
▼ Plano de conexiones tamaño nominal de 28 hasta 100

▼ Plano de conexiones tamaño nominal 140

1 El estrangulador de medición (bloque de mando) y la tubería no se incluyen en el volumen de suministro.

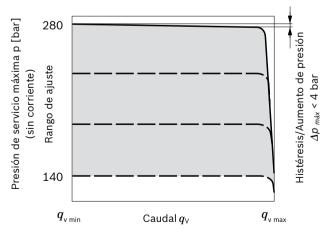
Datos del regulador

Datos del regulador de presión DR, ver página 11. Datos del regulador de caudal FR, ver página 14. Consumo máximo de líquido de mando aprox. 5,5 l/min


ED - Regulación de presión electrohidráulica

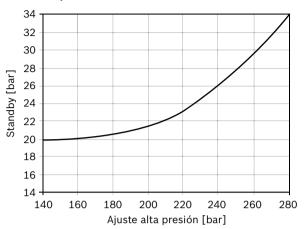
Mediante una corriente de solenoide variable establecida, la válvula ED se ajusta a una presión determinada. En caso de modificación en el consumidor (presión de carga) se produce un aumento o una disminución del ángulo de giro de la bomba (caudal) hasta alcanzar de nuevo la presión de ajuste establecida de forma eléctrica. De ese modo la bomba suministra tan sólo el fluido hidráulico tomado por el consumidor. La presión puede ajustarse sin saltos mediante la consigna de la corriente variable del solenoide.

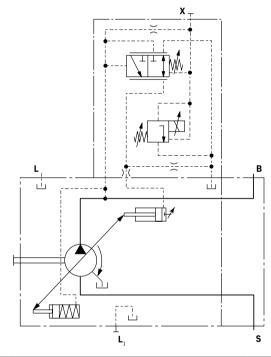
Si la corriente de solenoide se anula, la presión se limita mediante el corte de presión ajustable hidráulico a $p_{m\acute{a}x}$ (función remanente segura para caída de tensión, por ejemplo, para mandos de ventiladores). La dinámica de tiempo de giro de la regulación ED se ha optimizado para la aplicación en ventiladores.


En el pedido, indicar la aplicación claramente por escrito.

▼ Curva característica corriente-presión ED (curva característica negativa medida con la bomba en cilindrada nula)

Histéresis curva característica estática corriente-presión
 3 bar.


▼ Curva característica caudal-presión


Curva característica valida con n_1 = 1500 min⁻¹ y t_{fluid} = 50 °C. Consumo de fluido de mando: de 3 a 4,5 l/min. Aiuste estándar Standby, ver diagrama de la derecha, otros

Ajuste estándar Standby, ver diagrama de la derecha, otros valores previa consulta.

Efecto del ajuste de presión sobre el Standby (con corriente máxima)

▼ Plano de conexiones ED71/ED72

Datos técnicos, solenoides	ED71	ED72
Tensión	12 V (±20 %)	24 V (±20 %)
Corriente de mando		
Comienzo variación con p máx	0 mA	0 mA
Comienzo variación con $p_{ ext{min}}$	1200 mA	600 mA
Corriente límite	1,54 A	0,77 A
Resistencia nominal (con 20 °C)	5,5 Ω	22,7 Ω
Frecuencia Dither	100 hasta 200 Hz	100 hasta 200 Hz
Duración de conexión	100 %	100 %
=1 . / : 1	,	

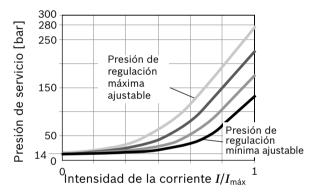
Electrónica de mando y tipo de protección, ver página 44

Rango de temperatura de servicio en la válvula de -20 °C a +115 °C $\,$

ER - Regulación de presión electrohidráulica

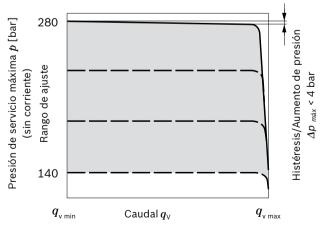
Mediante una corriente de solenoide variable establecida, la válvula ER se ajusta a una presión determinada.

En caso de modificación en el consumidor (presión de carga) se produce un aumento o disminución del ángulo de giro de la bomba (caudal) hasta que se alcance nuevamente la presión de ajuste establecida de forma eléctrica.

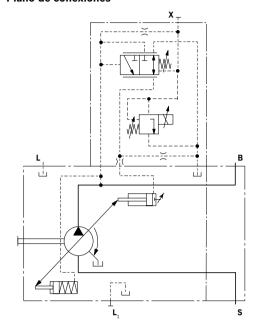

De ese modo la bomba suministra tan sólo el fluido hidráulico tomado por el consumidor. La presión puede ajustarse sin saltos mediante la consigna de la corriente variable del solenoide.

Si la corriente de solenoide se anula, la presión se limita mediante el corte de presión ajustable hidráulico a p_{\min} (Standby)

Tener en cuenta las indicaciones del proceso.


▼ Curva característica corriente-presión

(curva característica positiva medida con la bomba en cilindrada nula)


► Histéresis estática < 3 bar.

▼ Curva característica caudal-presión

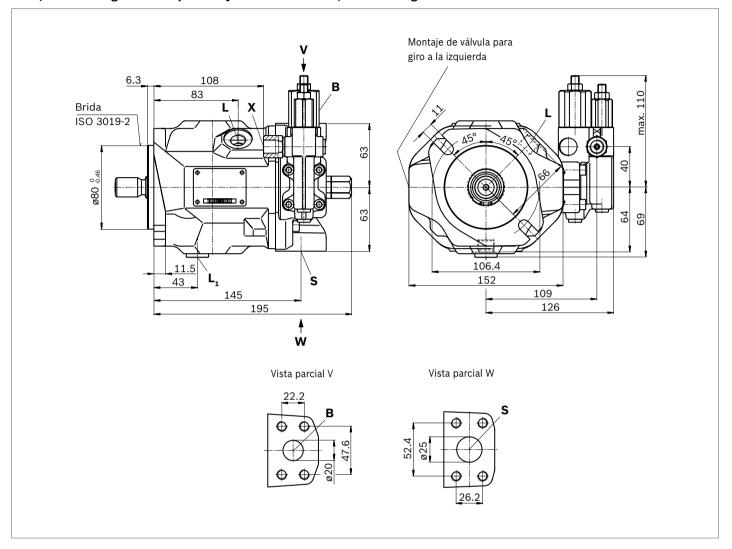
- Curva característica valida con $n_1 = 1500 \text{ min}^{-1}$ y $\theta_{\text{fluid}} = 50 \, ^{\circ}\text{C}$.
- ► Consumo de fluido de mando: de 3 a 4,5 l/min.
- Ajuste estándar Standby 14 bar, otros valores previa solicitud.
- ▶ Efecto del ajuste de presión sobre el Standby ±2 bar

▼ Plano de conexiones

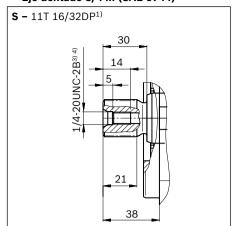
Datos técnicos, solenoides	ER71	ER72					
Tensión	12 V (±20 %)	24 V (±20 %)					
Corriente de mando							
Comienzo variación con $p_{ ext{mín}}$	100 mA	50 mA					
Final variación con p máx	1200 mA	600 mA					
Corriente límite	1,54 A	0,77 A					
Resistencia nominal (con 20 °C)	5,5 Ω	22,7 Ω					
Frecuencia Dither	100 hasta	100 hasta					
	200 Hz	200 Hz					
Duración de conexión	100 %	100 %					
Electrónica de mando y tipo de protección, ver página 44							

Rango de temperatura de servicio en la válvula de -20 °C a +115 °C

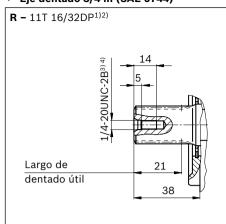
¡Indicaciones del proyecto!

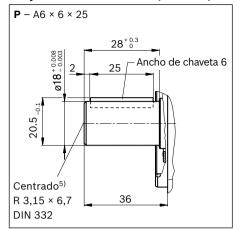

En caso de sobrecorriente (I > 1200 mA con 12 V o I > 600 mA con 24 V) del solenoide ER pueden generarse excesos de presión que ocasionan daños en la bomba o en la instalación, por eso:

- ▶ Ajustar los solenoides $I_{máx}$ con límite de corriente.
- Para proteger la bomba en caso de sobrecorriente se puede emplear un regulador de presión de placa intermedia.


El kit de construcción con regulador de presión como placa intermedia puede solicitarse a Bosch Rexroth bajo el n.º de pieza R902490825.

Dimensiones tamaño nominal 18


DFR / DFR1 - Regulador de presión y caudal hidráulico; sentido de giro a la derecha


▼ Eje dentado 3/4 in (SAE J744)

▼ Eje dentado 3/4 in (SAE J744)

▼ Eje cilíndrico con chaveta (DIN 6885)

Conexi	Conexiones		Tamaño ⁴⁾	$p_{ m máx~abs}$ [bar] ⁶⁾	Estado ¹⁰⁾
В	Conexión de trabajo (serie de presión estándar) Roscas de fijación	SAE J518 ⁷⁾ DIN 13	3/4 in M10 × 1,5; 17 prof.	350	0
S	Conexión de aspiración (serie de presión estándar) Roscas de fijación	SAE J518 ⁷⁾ DIN 13	1 in M10 × 1,5; 17 prof.	10	0
L	Conexión de drenaje	DIN 3852 ⁸⁾	M16 × 1,5; 12 prof.	2	O ₉₎
L ₁	Conexión de drenaje	DIN 3852 ⁸⁾	M16 × 1,5; 12 prof.	2	X ₉₎
X	Conexión presión de mando	DIN 3852	M14 × 1,5; 12 prof.	350	0
X	Conexión presión de mando para variador DG	DIN ISO 228	G1/4 in; 12 prof.	350	0

¹⁾ Dentado evolvente según ANSI B92.1a, ángulo de engrane 30°, base del hueco aplanada, centrado de flancos, clase de tolerancia 5

²⁾ Dentado según ANSI B92.1a, forma del dentado difiere de la norma.

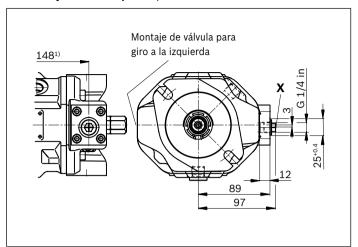
³⁾ Rosca según ASME B1.1

⁴⁾ Indicaciones sobre los torques de apriete, ver instrucciones de uso

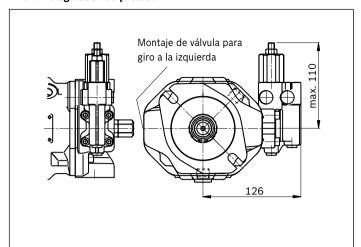
⁵⁾ Seguro axial del acoplamiento, por ejemplo, con acoplamientos con apriete o tornillo de apriete radial adicional.

⁶⁾ Pueden producirse picos de presión breves propios de la aplicación. Tenerlos en cuenta para la elección de los aparatos de medición y de la grifería.

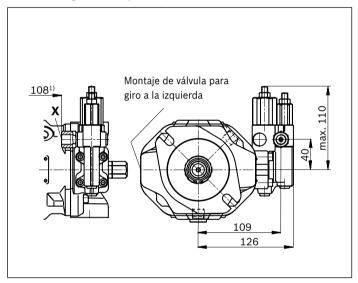
⁷⁾ Rosca de fijación métrica diferente a la norma


⁸⁾ El avellanado puede ser más profundo que el definido en la norma.

⁹⁾ Dependiendo de la posición de montaje debe conectarse L o L₁ (ver también indicaciones de montaje a partir de la página 45).


¹⁰⁾ O = debe conectarse (en estado de entrega cerrado)

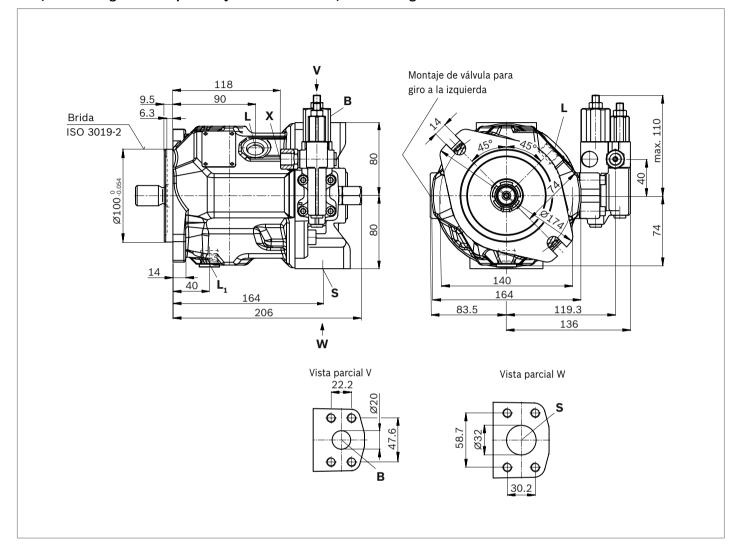
X = cerrada (en servicio normal)


▼ DG - Ajuste de dos puntos, mando directo


▼ DR - Regulador de presión

▼ DRG - Regulador de presión, mando remoto

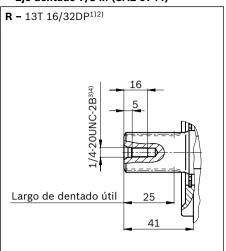
▼ ED7., ER7. - Regulación de presión electrohidráulica

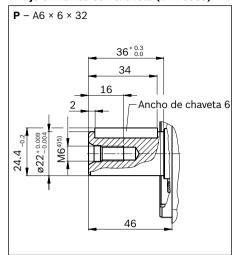


¹⁾ Hasta superficie de brida

²⁾ ER7.: 161 mm para el uso de un regulador de presión como placa intermedia

Dimensiones tamaño nominal 28


DFR/DFR1 - Regulador de presión y caudal hidráulico; sentido de giro a la derecha


▼ Eje dentado 7/8 in (SAE J744)

S - 13T 16/32DP¹⁾ 33.1 16 5 25.1

▼ Eje dentado 7/8 in (SAE J744)

▼ Eje cilíndrico con chaveta (DIN 6885)

Conexi	Conexiones		Tamaño ⁴⁾	$p_{máxabs}$ [bar] $^{6)}$	Estado ¹⁰⁾
В	Conexión de trabajo (serie de presión estándar) Roscas de fijación	SAE J518 ⁷⁾ DIN 13	3/4 in M10 × 1,5; 17 prof.	350	0
S	Conexión de aspiración (serie de presión estándar) Roscas de fijación	SAE J518 ⁷⁾ DIN 13	1 1/4 in M10 × 1,5; 17 prof.	10	0
L	Conexión de drenaje	DIN 3852 ⁸⁾	M18 × 1,5; 12 prof.	2	O ₉₎
L ₁	Conexión de drenaje	DIN 3852 ⁸⁾	M18 × 1,5; 12 prof.	2	X ₉₎
Х	Conexión presión de mando	DIN 3852	M14 × 1,5; 12 prof.	350	0
X	Conexión presión de mando para variador DG	DIN ISO 228	G1/4 in; 12 prof.	350	0

¹⁾ Dentado evolvente según ANSI B92.1a, ángulo de engrane 30°, base del hueco aplanada, centrado de flancos, clase de tolerancia 5

²⁾ Dentado según ANSI B92.1a, forma del dentado difiere de la norma.

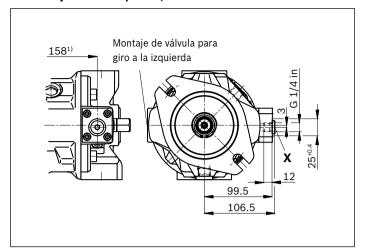
³⁾ Rosca según ASME B1.1

⁴⁾ Indicaciones sobre los torques de apriete, ver instrucciones de uso

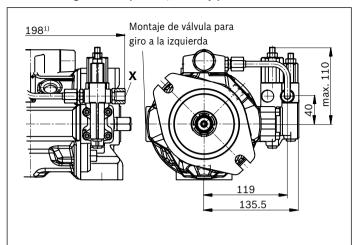
⁵⁾ Rosca según DIN 13; orificio de centrado según DIN 332-2

⁶⁾ Pueden producirse picos de presión breves propios de la aplicación. Tenerlos en cuenta para la elección de los aparatos de medición y de la grifería.

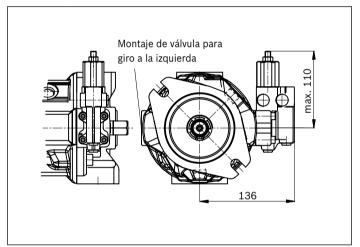
⁷⁾ Rosca de fijación métrica diferente a la norma

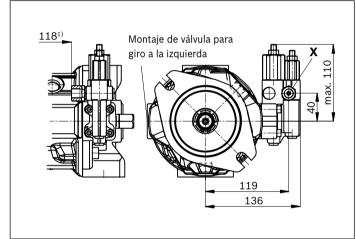

⁸⁾ El avellanado puede ser más profundo que el definido en la norma.

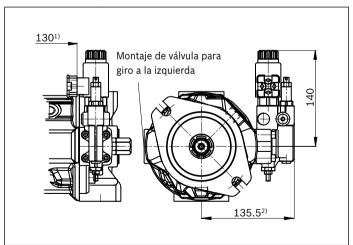
⁹⁾ Dependiendo de la posición de montaje se conecta L o L_1 (ver indicaciones de montaje a partir de la página 45).


¹⁰⁾ O = debe conectarse (en estado de entrega cerrado)

X = cerrada (en servicio normal)

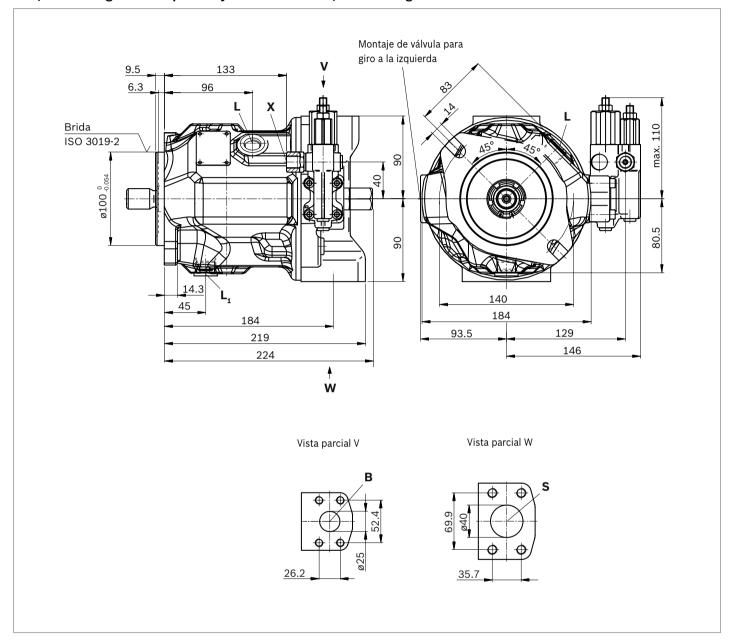

▼ DG - Ajuste de dos puntos, mando directo


▼ DFLR - Regulador de presión, caudal y potencia


▼ DR - Regulador de presión

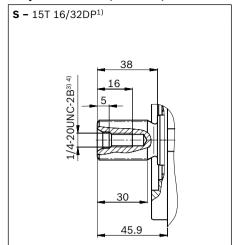
▼ DRG - Regulador de presión, mando remoto

▼ ED7., ER7. - Regulación de presión electrohidráulica

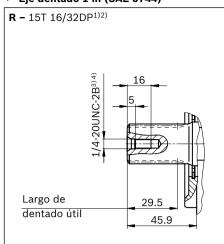


¹⁾ Hasta superficie de brida

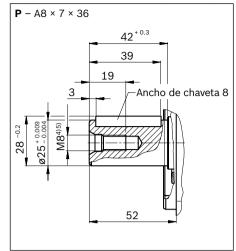
²⁾ ER7.: 170,5 mm para el uso de un regulador de presión como placa intermedia


Dimensiones tamaño nominal 45

DFR/DFR1 - Regulador de presión y caudal hidráulico; sentido de giro a la derecha



Dimensiones tamaño nominal 45


▼ Eje dentado 1 in (SAE J744)

▼ Eje dentado 1 in (SAE J744)

▼ Eje cilíndrico con chaveta (DIN 6885)

Conexio	nes	Norma	Tamaño ⁴⁾	$p_{máx\;abs}$ [bar] $^{6)}$	Estado ¹⁰⁾
В	Conexión de trabajo (serie de presión estándar) Roscas de fijación	SAE J518 ⁷⁾ DIN 13	1 in M10 × 1,5; 17 prof.	350	0
S	Conexión de aspiración (serie de presión estándar) Roscas de fijación	SAE J518 ⁷⁾ DIN 13	1 1/2 in M12 × 1,75; 20 prof.	10	0
L	Conexión de drenaje	DIN 3852 ⁸⁾	M22 × 1,5; 14 prof.	2	O ₉₎
L ₁	Conexión de drenaje	DIN 3852 ⁸⁾	M22 × 1,5; 14 prof.	2	X ₉₎
х	Conexión presión de mando	DIN 3852	M14 × 1,5; 12 prof.	350	0
Х	Conexión presión de mando para variador DG	DIN ISO 228	G1/4 in; 12 prof.	350	0

¹⁾ Dentado evolvente según ANSI B92.1a, ángulo de engrane 30°, base del hueco aplanada, centrado de flancos, clase de tolerancia 5

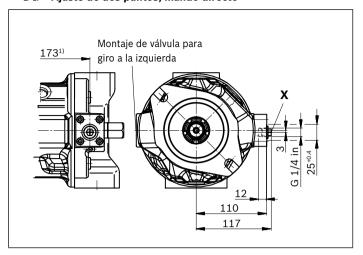
²⁾ Dentado según ANSI B92.1a, forma del dentado difiere de la norma.

³⁾ Rosca según ASME B1.1

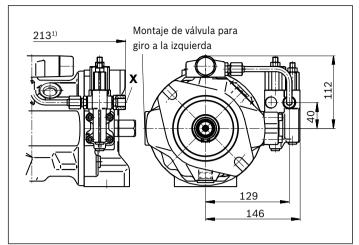
⁴⁾ Indicaciones sobre los torques de apriete, ver instrucciones de uso

⁵⁾ Rosca según DIN 13; orificio de centrado según DIN 332-2

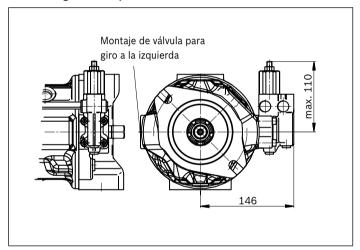
⁶⁾ Pueden producirse picos de presión breves propios de la aplicación. Tenerlos en cuenta para la elección de los aparatos de medición y de la grifería.

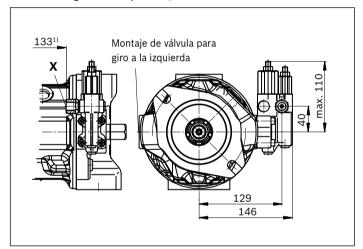

⁷⁾ Rosca de fijación métrica diferente a la norma

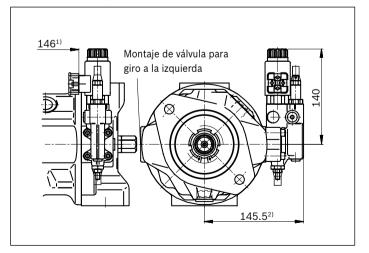
⁸⁾ El avellanado puede ser más profundo que el definido en la norma.


⁹⁾ Dependiendo de la posición de montaje se conecta L o L₁ (ver indicaciones de montaje a partir de la página 45).

¹⁰⁾ O = debe conectarse (en estado de entrega cerrado) X = cerrada (en servicio normal)


▼ DG - Ajuste de dos puntos, mando directo


▼ DFLR - Regulador de presión, caudal y potencia


▼ DR - Regulador de presión

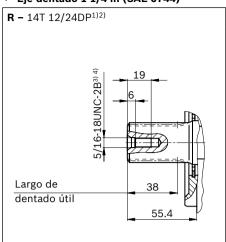
▼ DRG - Regulador de presión, mando remoto

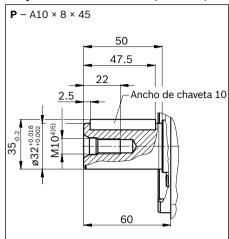
▼ ED7., ER7. - Regulación de presión electrohidráulica

¹⁾ Hasta superficie de brida

²⁾ ER7.: 180,5 mm para el uso de un regulador de presión como placa intermedia

Dimensiones tamaño nominal 71 y 88


DFR/DFR1 - Regulador de presión y caudal hidráulico; sentido de giro a la derecha


▼ Eje dentado 1 1/4 in (SAE J744)

S - 14T 12/24DP¹⁾ 47.5 19 6 39.5 55.4

▼ Eje dentado 1 1/4 in (SAE J744)

▼ Eje cilíndrico con chaveta (DIN 6885)

Conexio	ones	Norma	Tamaño ⁴⁾	$p_{máx\;abs}$ [bar] $^{6)}$	Estado ¹⁰⁾
В	Conexión de trabajo (serie de presión estándar) Roscas de fijación	SAE J518 ⁷⁾ DIN 13	1 in M10 × 1,5; 17 prof.	350	0
S	Conexión de aspiración (serie de presión estándar) Roscas de fijación	SAE J518 ⁷⁾ DIN 13	2 in M12 × 1,75; 20 prof.	10	0
L	Conexión de drenaje	DIN 3852 ⁸⁾	M22 × 1,5; 14 prof.	2	O ₉₎
L ₁	Conexión de drenaje	DIN 3852 ⁸⁾	M22 × 1,5; 14 prof.	2	X ₉₎
Х	Conexión presión de mando	DIN 3852	M14 × 1,5; 12 prof.	350	0
x	Conexión presión de mando para variador DG	DIN ISO 228	G1/4 in; 12 prof.	350	0

¹⁾ Dentado evolvente según ANSI B92.1a, ángulo de engrane 30°, base del hueco aplanada, centrado de flancos, clase de tolerancia 5

²⁾ Dentado según ANSI B92.1a, forma del dentado difiere de la norma.

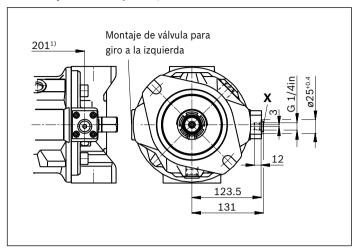
³⁾ Rosca según ASME B1.1

⁴⁾ Indicaciones sobre los torques de apriete, ver instrucciones de uso

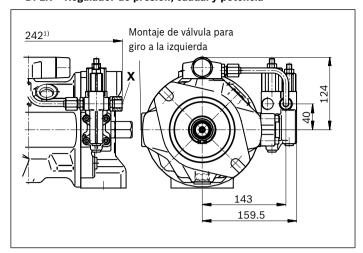
⁵⁾ Rosca según DIN 13; orificio de centrado según DIN 332-2

⁶⁾ Pueden producirse picos de presión breves propios de la aplicación. Tenerlos en cuenta para la elección de los aparatos de medición y de la grifería.

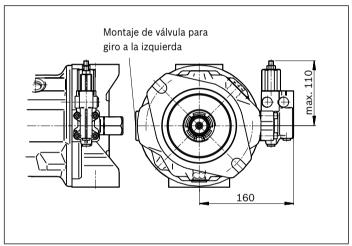
⁷⁾ Rosca de fijación métrica diferente a la norma

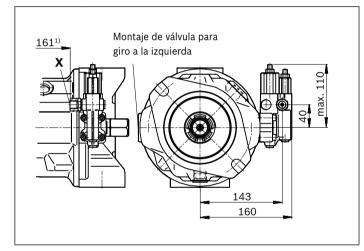

⁸⁾ El avellanado puede ser más profundo que el definido en la norma.

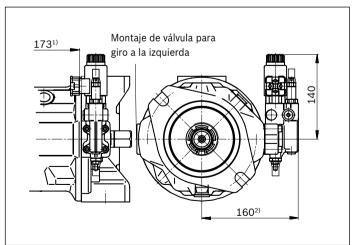
⁹⁾ Dependiendo de la posición de montaje se conecta L o L_1 (ver indicaciones de montaje a partir de la página 45).


¹⁰⁾ O = debe conectarse (en estado de entrega cerrado)

X = cerrada (en servicio normal)

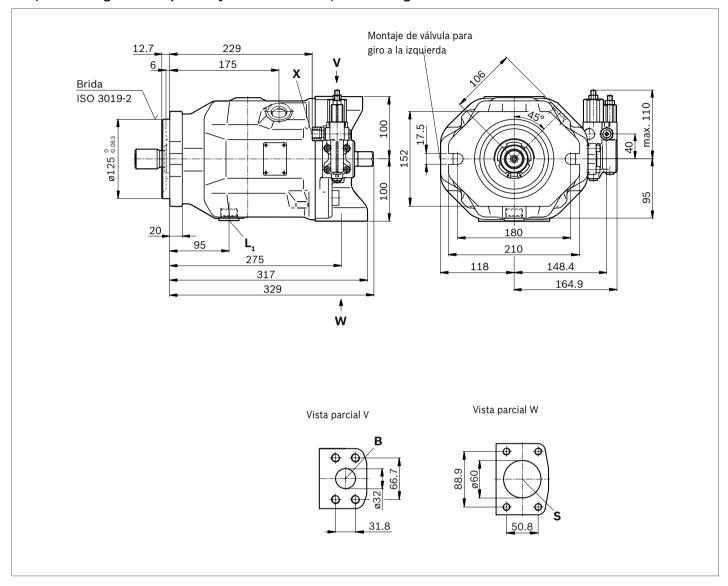

▼ DG - Ajuste de dos puntos, mando directo


▼ DFLR - Regulador de presión, caudal y potencia

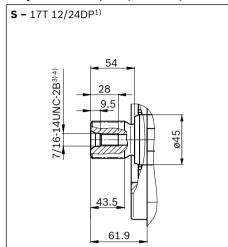

▼ DR - Regulador de presión

▼ DRG - Regulador de presión, mando remoto

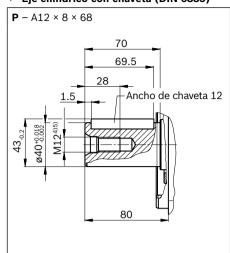
▼ ED7., ER7. - Regulación de presión electrohidráulica



¹⁾ Hasta superficie de brida


²⁾ ER7.: 195 mm para el uso de un regulador de presión como placa intermedia

Dimensiones tamaño nominal 100


DFR/DFR1 - Regulador de presión y caudal hidráulico; sentido de giro a la derecha

▼ Eje dentado 1 1/2 in (SAE J744)

▼ Eje cilíndrico con chaveta (DIN 6885)

Conexi	ones	Norma	Tamaño ⁴⁾	$p_{ m máx~abs}$ [bar] ⁶⁾	Estado ¹⁰⁾
В	Conexión de trabajo (serie de alta presión) Roscas de fijación	SAE J518 ⁷⁾ DIN 13	1 1/4 in M14 × 2; 19 prof.	350	0
S	Conexión de aspiración (serie de presión estándar) Roscas de fijación	SAE J518 ⁷⁾ DIN 13	2 1/2 in M12 × 1,75; 17 prof.	10	0
L	Conexión de drenaje	DIN 38528)	M27 × 2; 16 prof.	2	O ₉₎
L ₁	Conexión de drenaje	DIN 38528)	M27 × 2; 16 prof.	2	X ₉₎
Х	Conexión presión de mando	DIN 3852	M14 × 1,5; 12 prof.	350	0
x	Conexión presión de mando para variador DG	DIN ISO 228	G1/4 in; 12 prof.	350	0

¹⁾ Dentado evolvente según ANSI B92.1a, ángulo de engrane 30°, base del hueco aplanada, centrado de flancos, clase de tolerancia 5

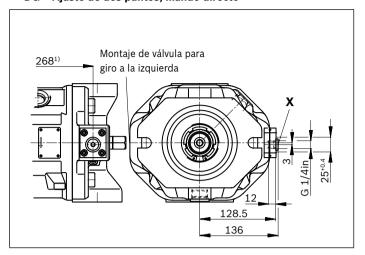
²⁾ Dentado según ANSI B92.1a, forma del dentado difiere de la norma.

³⁾ Rosca según ASME B1.1

⁴⁾ Indicaciones sobre los torques de apriete, ver instrucciones de uso

⁵⁾ Rosca según DIN 13; orificio de centrado según DIN 332-2

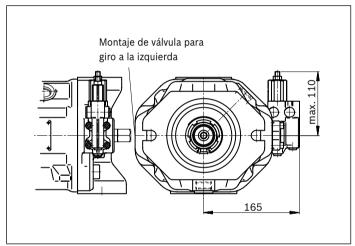
⁶⁾ Pueden producirse picos de presión breves propios de la aplicación. Tenerlos en cuenta para la elección de los aparatos de medición y de la grifería.

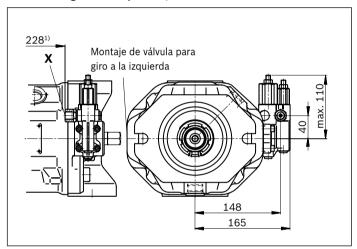

⁷⁾ Rosca de fijación métrica diferente a la norma

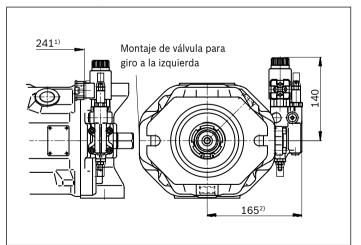
⁸⁾ El avellanado puede ser más profundo que el definido en la norma.

⁹⁾ Dependiendo de la posición de montaje se conecta L o L₁ (ver indicaciones de montaje a partir de la página 45).

¹⁰⁾ O = debe conectarse (en estado de entrega cerrado) X = cerrada (en servicio normal)

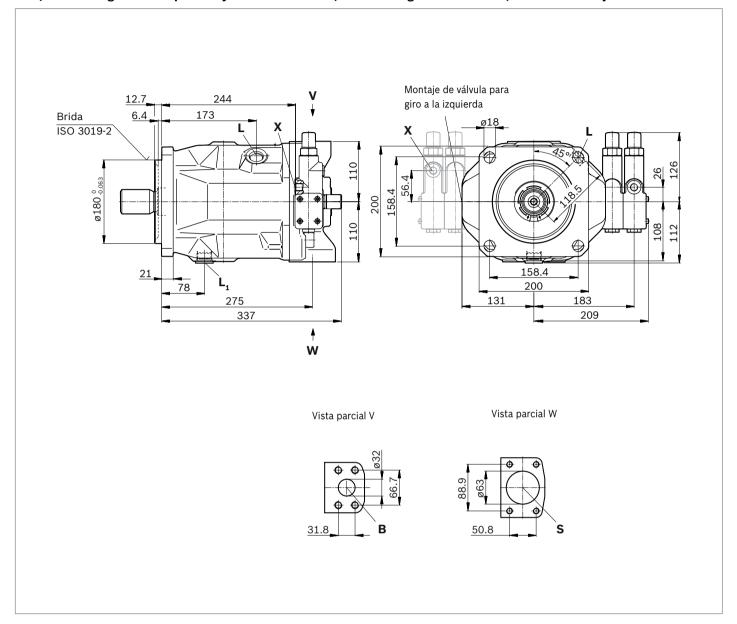

▼ DG - Ajuste de dos puntos, mando directo


▼ DFLR - Regulador de presión, caudal y potencia

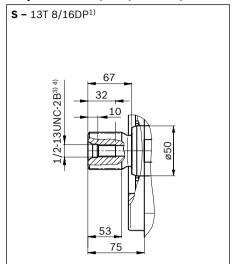

▼ DR - Regulador de presión

▼ DRG - Regulador de presión, mando remoto

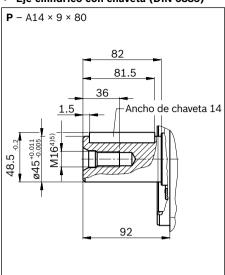
▼ ED7., ER7. - Regulación de presión electrohidráulica



¹⁾ Hasta superficie de brida


²⁾ ER7.: 200 mm para el uso de un regulador de presión como placa intermedia

Dimensiones tamaño nominal 140


DFR/DFR1 - Regulador de presión y caudal hidráulico, sentido de giro a la derecha, brida de montaje B

▼ Eje dentado 1 3/4 in (SAE J744)

▼ Eje cilíndrico con chaveta (DIN 6885)

Conexio	Conexiones		Tamaño ⁴⁾	$p_{ m máx~abs}$ [bar] ⁶⁾	Estado ¹⁰⁾
В	Conexión de trabajo (serie de alta presión)	SAE J518 ⁷⁾	1 1/4 in	350	0
	Roscas de fijación	DIN 13	M14 × 2; 19 prof.		
S	Conexión de aspiración (serie de presión estándar)	SAE J518 ⁷⁾	2 1/2 in	10	0
	Roscas de fijación	DIN 13	M12 × 1,75; 17 prof.		
L	Conexión de drenaje	DIN 3852 ⁸⁾	M27 × 2; 16 prof.	2	O ₉₎
L ₁	Conexión de drenaje	DIN 3852 ⁸⁾	M27 × 2; 16 prof.	2	X ₉₎
х	Conexión presión de mando	DIN 3852	M14 × 1,5; 12 prof.	350	0
Х	Conexión presión de mando para variador DG	DIN 3852	M14 × 1,5; 12 prof.	350	0
M _H	Medición alta presión (solo con variador DG)	DIN 3852	M14 × 1,5; 12 prof.	350	X

¹⁾ Dentado evolvente según ANSI B92.1a, ángulo de engrane 30°, base del hueco aplanada, centrado de flancos, clase de tolerancia 5

²⁾ Dentado según ANSI B92.1a, forma del dentado difiere de la norma.

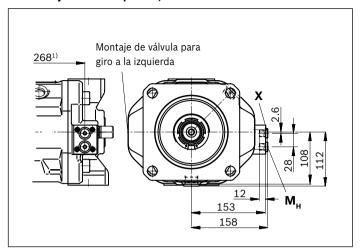
³⁾ Rosca según ASME B1.1

⁴⁾ Indicaciones sobre los torques de apriete, ver instrucciones de uso

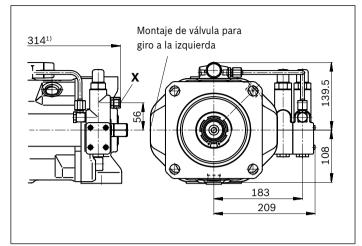
⁵⁾ Rosca según DIN 13; orificio de centrado según DIN 332-2

⁶⁾ Pueden producirse picos de presión breves propios de la aplicación. Tenerlos en cuenta para la elección de los aparatos de medición y de la grifería.

⁷⁾ Rosca de fijación métrica diferente a la norma

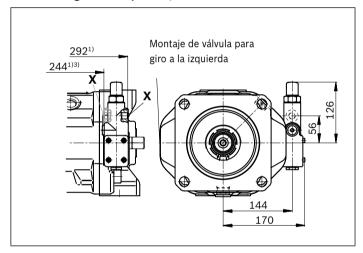

⁸⁾ El avellanado puede ser más profundo que el definido en la norma.

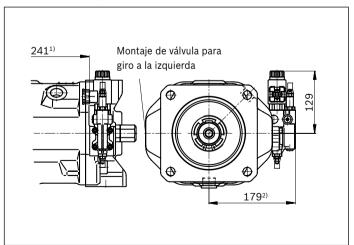
⁹⁾ Dependiendo de la posición de montaje se conecta L o L_1 (ver indicaciones de montaje a partir de la página 45).


¹⁰⁾ O = debe conectarse (en estado de entrega cerrado)

X = cerrada (en servicio normal)

▼ DG - Ajuste de dos puntos, mando directo


▼ DFLR - Regulador de presión, caudal y potencia

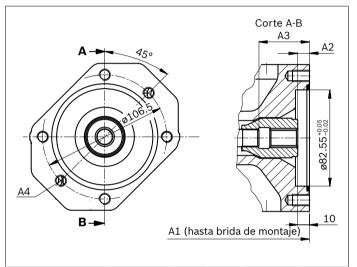

▼ DR - Regulador de presión

▼ DRG - Regulador de presión, mando remoto

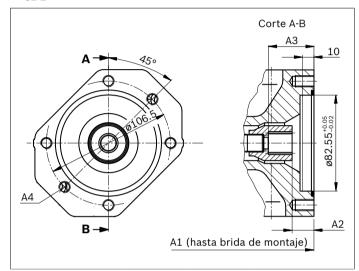
▼ ED7., ER7. - Regulación de presión electrohidráulica

¹⁾ Hasta superficie de brida

3) Con sentido de giro a la izquierda


²⁾ ER7.: 214 mm para el uso de un regulador de presión como placa intermedia

Dimensiones arrastre


Brida ISO 3019-1 (SAE)		Cubo para eje dentado ¹⁾	Disponil	Disponibilidad de tamaños nominales							
Diámetro	Símbolo	Diámetro	18	28	45	71	88	100	140		
82-2 (A)	8, 00, 00	5/8 in 9T 16/32DP	•	•	•	•	•	•	•	K01	
		3/4 in 11T 16/32DP	•	•	•	•	•	•	•	K52	

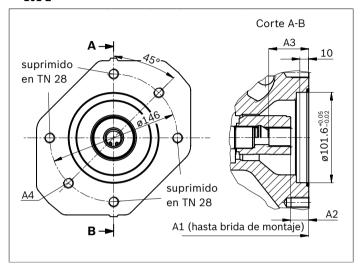
• = Disponible - = No disponible

▼ 82-2

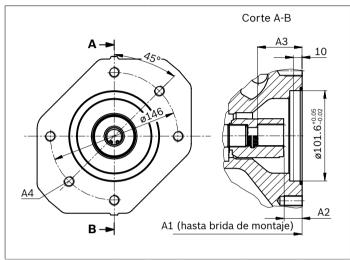
▼ 82-2

K01	TN	A1	A2	А3	A4 ²⁾
(SAE J744 16-4 (A))					
	18	182	10	43,3	M10×1,5; 14,5 prof.
	28	204	10	33,7	M10×1,5; 16 prof.
	45	229	10,7	53,4	M10×1,5; 16 prof.
	71	267	11,8	61,3	M10×1,5; 20 prof.
	88	267	11,8	61,3	M10×1,5; 20 prof.
	100	338	10,5	65	M10×1,5; 16 prof.
	140	350	10,8	77,3	M10×1,5; 16 prof.

K52	TN	A1	A2	А3	A4 ²⁾
(SAE J744 19-4 (A-B))					
	18	182	18,8	38,7	M10×1,5; 14,5 prof.
	28	204	18,8	38,7	M10×1,5; 16 prof.
	45	229	18,9	38,7	M10×1,5; 16 prof.
	71	267	21,3	41,4	M10×1,5; 20 prof.
	88	267	21,3	41,4	M10×1,5; 20 prof.
	100	338	19	38,9	M10×1,5; 16 prof.
	140	350	18,9	38,6	M10×1,5; 16 prof.


Según ANSI B92.1a, ángulo de engrane 30°, base del hueco aplanada, centrado de flancos, clase de tolerancia 5

Rosca según DIN 13, torque de apriete máximo ver instrucciones de uso


Brida ISO 3019-1 (SAE)		Cubo para eje	Cubo para eje dentado ¹⁾		Disponibilidad de tamaños nominales							
Diámetro	Símbolo	Diámetro	Diámetro			45	71	88	100	140		
101-2 (A)	8, 00, 00	7/8 in 13T	16/32DP	_	•	•	•	•	•	•	K68	
		1 in 15T	16/32DP	-	_	•	•	•	•	•	K04	

• = Disponible - = No disponible

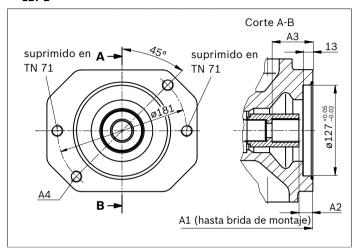
▼ 101-2

▼	101-2
---	-------

K68	TN	A1	A2	А3	A4 ²⁾
(SAE J744 22-4 (B))					
	28	204	17,8	41,7	M12×1,75 ³⁾
	45	229	17,9	41,7	M12×1,75; 18 prof.
	71	267	20,3	44,7	M12×1,75; 20 prof.
	88	267	20,3	44,7	M12×1,75; 20 prof.
	100	338	18	41,9	M12×1,75; 20 prof.
	140	350	17,8	41,6	M12×1,75; 20 prof.

K04	TN	A1	A2	А3	A4 ²⁾
(SAE J744 25-4 (B-B))					
	45	229	18,4	46,7	M12×1,75; 18 prof.
	71	267	20,8	49,1	M12×1,75; 20 prof.
	88	267	20,8	49,1	M12×1,75; 20 prof.
	100	338	18,2	46,6	M12×1,75; 20 prof.
	140	350	18,3	45,9	M12×1,75; 20 prof.

¹⁾ Según ANSI B92.1a, ángulo de engrane 30°, base del hueco aplanada, centrado de flancos, clase de tolerancia 5


²⁾ Rosca según DIN 13, torque de apriete máximo ver instrucciones de uso

³⁾ Continuo

Brida ISO 3019-1 (SAE)		Cubo para eje dentado ¹⁾	Disponil	Disponibilidad de tamaños nominales							
Diámetro	Símbolo	Diámetro	18	28	45	71	88	100	140		
127-2 (C)	σ⁰, ⊶	1 1/4 in 14T 12/24DP	_	-	_	•	•	•	•	K07	
		1 1/2 in 17T 12/24DP	_	-	_	-	_	•	•	K24	

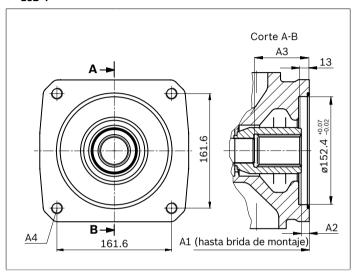
• = Disponible - = No disponible

▼ 127-2

▼ 127-2	
	Corte A-B
A - 450	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
	A1 (hasta brida de montaje)

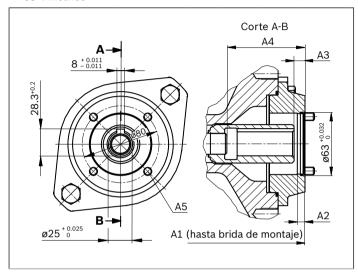
К07	TN	A1	A2	А3	A4 ²⁾
(SAE J744 32-4 (C))					
	71	267	21,8	58,6	M16×2 ³⁾
	88	267	21,8	58,6	M16×2 ³⁾
	100	338	19,5	56,4	M16×2 ³⁾
	140	350	19,3	56,1	M16×2; 24 prof.

K24	TN	A1	A2	А3	A4 ²⁾
(SAE J744 38-4 (C-C))					
	100	338	10,5	65	M16×2 ³⁾
	140	350	7,9	73,3	M16×2; 32 prof.


Según ANSI B92.1a, ángulo de engrane 30°, base del hueco aplanada, centrado de flancos, clase de tolerancia 5

Rosca según DIN 13, torque de apriete máximo ver instrucciones de uso

³⁾ Continuo


Brida ISO 3019-1 (SAE)		Cubo para eje dentado ¹⁾	Disponil	Disponibilidad de tamaños nominales							
Diámetro Símbolo Diámetro		18	28	45	71	88	100	140			
152-4 (A)		1 3/4 in 13T 8/16DP	-	_	_	-	_	_	•	K17	
63-4	\$3	Eje chaveta métrico Ø25	-	•	•	•	•	•	•	K57	

▼ 152-4

K17	TN	A1	A2	А3	A4 ²⁾
(SAE J744 44-4 (D))					
	140	350	11	77,3	M16×2; ³⁾

▼ **63-4** métrico⁴⁾

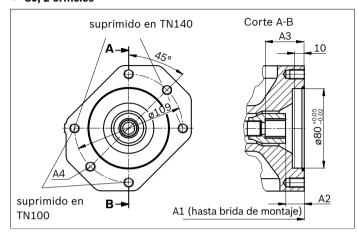
K57	TN	A1	A2	А3	A4	A5 ⁵⁾
(brida 4 orificios)						
	28	232	8	10,6	58,4	M8
	45	257	8	11	81	M8
	71	283	8	12,5	77	M10
	88	283	8	12,5	77	M10
	100	354	8	10,5	81	M10
	140	366	8	11	93	M8

 $_{\mbox{\scriptsize 1)}}$ Según ANSI B92.1a, ángulo de engrane 30°, base del hueco aplanada, centrado de flancos, clase de tolerancia 5

Rosca según DIN 13, torque de apriete máximo ver instrucciones de uso

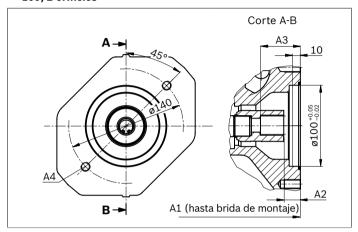
³⁾ Continuo

 ⁴⁾ Para montaje de una bomba de pistones radiales R4 (ver ficha técnica 11263)

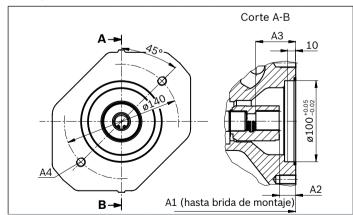

⁵⁾ Los tornillos para el montaje del motor de pistones radiales se incluyen en el volumen de suministro

40 **A10VSO Serie 31** | Bomba variable de pistones axiales Dimensiones arrastre

Brida ISO 3019-2		Cubo para	Cubo para eje dentado ¹⁾		Disponibilidad de tamaños nominales							
Diámetro	Símbolo	Diámetro		18	28	45	71	88	100	140		
80, 2 orificios	8, ∞, ₽	3/4 in	11T 16/32DP	•	•	•	•	•	•	•	KB2	
100, 2 orificios	o	7/8 in	13T 16/32DP	-	•	•	•	•	•	•	KB3	
		1 in	15T 16/32DP	-	-	•	•	•	•	•	KB4	


• = Disponible - = No disponible

▼ 80, 2 orificios


KB2	TN	A1	A2	А3	A4 ²⁾
(SAE J744 19-4 (A-B))					
	18	182	18,8	38,7	M10×1,5; 14,5 prof.
	28	204	18,8	38,7	M10×1,5; 16 prof.
	45	229	18,9	38,7	M10×1,5; 16 prof.
	71	267	21,3	41,4	M10×1,5; 20 prof.
	88	267	21,3	41,4	M10×1,5; 20 prof.
	100	338	19	38,9	M10×1,5; 20 prof.
	140	350	18,9	38,6	M10×1,5; 20 prof.

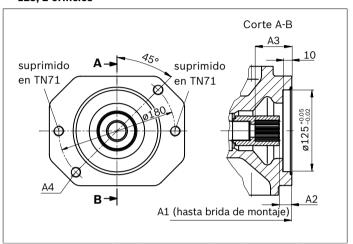
▼ 100, 2 orificios

KB3 (SAE J744 22-4 (B))	TN	A1	A2	А3	A4 ²⁾
	28	204	17,8	41,7	M12×1,5 ³⁾
	45	229	17,9	41,7	M12×1,5 ³⁾
	71	267	20,3	44,1	M12×1,5; 20 prof.
	88	267	20,3	44,1	M12×1,5; 20 prof.
	100	338	18	41,9	M12×1,5; 20 prof.
	140	350	17,8	41,6	M12×1,5; 20 prof.

▼ 100, 2 orificios

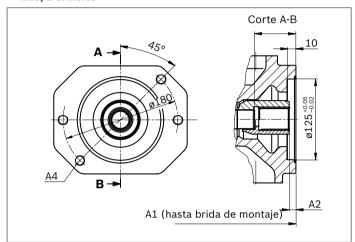
KB4	TN	A1	A2	А3	A4 ²⁾
(SAE J744 25-4 (B-B))					
	45	229	18,4	46,7	M12×1,75 ³⁾
	71	267	20,8	49,1	M12×1,75; 20 prof.
	88	267	20,8	49,1	M12×1,75; 20 prof.
	100	338	18,2	46,6	M12×1,75; 20 prof.
	140	350	18,3	45,9	M12×1,75; 20 prof.

¹⁾ Según ANSI B92.1a, ángulo de engrane 30°, base del hueco aplanada, centrado de flancos, clase de tolerancia 5

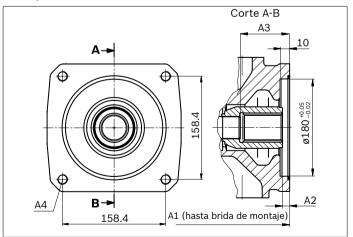

Rosca según DIN 13, torque de apriete máximo ver instrucciones de uso

³⁾ Continuo

Brida ISO 3019-2		Cubo para eje dentado ¹⁾	Disponik	Disponibilidad de tamaños nominales							
Diámetro	Símbolo	Diámetro	18	28	45	71	88	100	140		
125, 2 orificios	o°, o-o	1 1/4 in 14T 12/24DP	_	-	-	•	•	•	•	KB5	
		1 1/2 in 17T 12/24DP	-	-	-	_	_	•	•	KB6	
180, 2 orificios	; ;	1 3/4 in 13T 8/32DP	_	-	-	-	_	-	•	KB7	


• = Disponible - = No disponible

▼ 125, 2 orificios


KB5	TN	A1	A2	А3	A4 ²⁾
(SAE J744 32-4 (C))					
	71	267	21,8	58,6	M16×2 ³⁾
	88	267	21,8	58,6	M16×2 ³⁾
	100	338	19,5	56,4	M16×2 ³⁾
	140	350	19,3	56,1	M16×2; 24 prof.

▼ 125, 2 orificios

KB6 (SAE J744 38-4 (C-C))	TN	A1	A2	А3	A4 ²⁾
	100	338	10,5	65	M16×2 ³⁾
	140	350	10,1	77,3	M16×2; 32 prof.

▼ 180, 4 orificios

KB7	TN	A1	A2	А3	A4 ²⁾
(SAE J744 44-4 (D))					
	140	350	11,3	77,3	M16×2 ³⁾

- 1) Según ANSI B92.1a, ángulo de engrane 30°, base del hueco aplanada, centrado de flancos, clase de tolerancia 5
- Rosca según DIN 13, torque de apriete máximo ver instrucciones de uso
- 3) Continuo

42

Resumen de las posibilidades de montaje

Brida de montaje SAE

Arrastre			Posibilidades de i	montaje – 2 ^a bomba		
Brida ISO 3019-1	Cubo para eje dentado	Código	A10VSO/31 TN (eje)	A10V(S)O/5x TN (eje)	Bomba de engranajes Forma constructiva (TN)	Arrastre incluido para TN
82-2 (A)	5/8 in	K01	18 (U)	10 (U) 18 (U)	AZPF	18 hasta 140
	3/4 in	K52	18 (S, R)	10 (S) 18 (S, R)	_	18 hasta 140
101-2 (B)	7/8 in	K68	28 (S, R) 45 (U, W) ¹⁾	28 (S, R) 45 (U, W) ¹⁾	AZPN/G	28 hasta 140
	1 in	K04	45 (S, R) -	45 (S, R) 60, 63, 72 (U, W) ²⁾	PGH4	45 hasta 140
127-2 (C)	1 1/4 in	K07	71 (S, R) 88 (S, R) 100 (U, W) ³⁾	85 (U, W) ³⁾ 100 (U, W)	_	71 hasta 140
	1 1/2 in	K24	100 (S)	85 (S) 100 (S)	PGH5	100 hasta 140
152-4 (4 orificios D)	1 3/4 in	K17	140 (S)	-	-	140

Brida de montaje ISO

Arrastre			Posibilidades de montaje - 2ª bomba						
Brida ISO 3019-2	Cubo para eje dentado	Código	A10VSO/31 TN (eje)	A10V(S)O/5x TN (eje)	Bomba de engranajes con dentado exterior, forma constructiva (TN)	Arrastre incluido para TN			
80, 2 orificios	3/4 in	KB2	18 (S, R)	10 (S)	-	18 hasta 140			
100, 2 orificios	7/8 in	KB3	28 (S, R)	_	-	28 hasta 140			
	1 in	KB4	45 (S, R)	-	-	45 hasta 140			
125, 2 orificios	1 1/4 in	KB5	71 (S, R) 88 (S, R)	-	-	71 hasta 140			
	1 1/2 in	KB6	100 (S)	_	-	100 hasta 140			
180, 4 orificios	1 3/4 in	KB7	140 (S)	_	-	140			

Brida de montaje ISO para eje de chaveta

Arrastre			Posibilidades de montaje – 2ª bomba	
Brida ISO 3019-2	Cubo para eje de chaveta	Código	Bomba de pistones radiales	Arrastre incluido para TN
63-4 métrico	3/4 in	K57	R4	28 hasta 140

¹⁾ No con la bomba principal NG28 con K68

²⁾ No con la bomba principal NG45 con K04

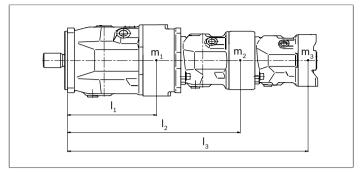
³⁾ No con la bomba principal NG71 y NG88 con K07

Bombas combinadas A10VSO + A10VSO

Con la combinación de bombas el usuario dispone de circuitos independientes entre sí, también sin reductor distribuidor.

En el pedido de bombas combinadas deben unirse las denominaciones de tipo de la 1^a y 2^a mediante un "+".

Ejemplo de pedido:


A10VSO100DFR1/31R-VSA12K04+ A10VSO45DFR/31R-VSA12N00

Si no es necesario incorporar otra bomba de fábrica, basta con indicar la denominación de tipo simple.

La bomba tándem de dos tamaños nominales iguales se permite con una aceleración de masas dinámica de máximo $10 g = 98.1 \text{ m/s}^2$ sin soportes adicionales.

Cada arrastre está cerrado con una tapa **no hermética**. Por eso, antes de la puesta en marcha hay que colocar tapas herméticas en las unidades. Los arrastres también pueden pedirse con tapas herméticas. Por favor, indicar claramente por escrito.

En el caso de bombas combinadas con más de dos bombas es necesario un cálculo de la brida de montaje sobre el torque de masa admisible (consultar).

m_1, m_2, m_3	Masa de la bomba	[kg]	
l_1, l_2, l_3	Distancia al centro de gravedad	[mm]	
$T_m = (m_1 \times l_1 + l_2 \times l_3 + l_3 \times l_3$	$+m_2 \times l_2 + m_3 \times l_3) \times \frac{1}{10}$	[Nm]	

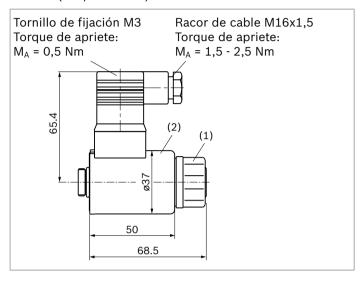
Torques de masas admisibles

Tamaño nominal			18	28	45	71	88	100	140
estático	T_m	Nm	500	880	1370	2160	2160	3000	4500 ¹⁾ 3000 ²⁾
dinámico con 10 g (98,1 m/s²)	T_m	Nm	50	88	137	216	216	300	450 ¹⁾ 300 ²⁾
Masa sin arrastre (N00)	m	kg	12,9	18	23,5	35,2	35,2	49,5	65,4
Masa con arrastre (K)			13,8	19,3	25,1	38	38	55,4	74,4
Distancia al centro de gravedad sin arrastre (N00)	l_1	mm	92	100	113	127	127	161	159
Distancia al centro de gravedad con arrastre (K)	l_1	mm	98	107	120	137	137	178	180

¹⁾ Brida de 4 orificios (D)

²⁾ Brida de 2 orificios (C)

44

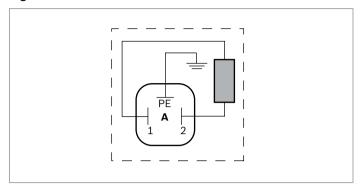

Enchufe para solenoides

HIRSCHMANN DIN EN 175 301-803-A /ISO 4400

sin diodo extintor bidireccional H

Con contraenchufe montado se proporciona el siguiente tipo de protección:

► IP65 (DIN/EN 60529)


La junta anular en el racor del cable es apropiada para un diámetro de cable de 4,5 mm hasta 10 mm.

El conector no está incluido en el volumen de suministro. Bosch Rexroth puede suministrarlo previa petición.

Electrónica de mando

Regulación	Electrónica		Más información
Amplificador eléctrico	VT 2000 ¹⁾	analógico	29904
Módulos amplificado- res eléctricos	VT 11029 VT 11030 ¹⁾	analógico	29741
Amplificador para vál- vulas de presión pro- porcionales	VT-VSPA1-1 ¹⁾ VT-VSPA1K-1 ¹⁾	analógico	30111

Número de material Bosch Rexroth: R902602623 Enchufe en el solenoide según DIN 43650

Avisos

- Según necesidad puede modificar la posición de los conectores mediante el giro de los cuerpos de los solenoides.
- ► El procedimiento puede encontrarse en las instrucciones de uso.

Avisos de montaje

Generalidades

La unidad de pistones axiales debe estar llena de fluido hidráulico y purgada de aire para la puesta en marcha y durante el servicio. Esto también se aplica después de largos periodos de inactividad, ya que la unidad de pistones axiales puede vaciarse a través de las tuberías hidráulicas. Especialmente en la posición de montaje "eje de accionamiento hacia arriba/abajo", prestar atención a que el llenado y el purgado sean completos, ya que existe peligro por ejemplo de funcionar en seco.

El drenaje en la cámara de la carcasa debe conducirse hacia el tanque a través de la conexión de tanque más elevada (L, L_1) .

En el caso de bombas combinadas, hay que drenar cada bomba por separado.

Si se utiliza una misma tubería de drenaje para varias unidades, hay que prestar atención para no superar la correspondiente presión de la carcasa. La tubería de drenaje común debe dimensionarse de manera que la presión máxima permitida de la carcasa de todas las unidades conectadas no se supere en el estado de servicio, en especial durante el arrangue en frío. Si esto no es posible, llegado el caso se deben colocar tuberías a tanque separadas. Para alcanzar valores de ruido propicios, deben desacoplarse todas las tuberías de conexión unidas mediante elementos elásticos y evitar el montaje sobre tanque. Las tuberías de aspiración y de drenaje deben desembocar en el tanque por debajo del nivel de fluido mínimo en cualquier estado de servicio. La altura de aspiración permitida h_S se deduce a partir de la pérdida de presión total, pero no puede ser superior a h_{S máx} = 800 mm. La presión mínima de aspiración de 0,8 bar absolutos en la conexión S no puede ser inferior durante el servicio y el arranque en frío. Al dimensionar el tanque, proporcionar una distancia suficiente entre las tuberías de aspiración y de drenaje. Con ello se evitará una aspiración directa de fluido de retorno caliente en la tubería de aspiración.

Ver leyendas en la página 47.

Posición de montaje

Ver los siguientes ejemplos del **1** hasta el **12**. Si se solicitan se pueden suministrar otras posiciones de montaje.

Posiciones de montaje recomendadas: 1 y 3

Montaje bajo el tanque (estándar)

Montaje bajo el tanque es cuando la unidad de pistones axiales se encuentra por debajo del nivel de fluido mínimo fuera del tanque.

Posi	ción de montaje	Purgado	Llenado
1	h _{t min} SB	L	L ₁
21)	h _{t min} SBI	L ₁	L
	h _{t min} SB	L ₁	L
1)	h _{t min} SB	L	L ₁

¹⁾ Puesto que en esta posición no es posible un purgado y un llenado completo, la bomba debe purgarse y llenarse antes de su montaje en posición horizontal.

Montaje sobre el tanque

Montaje sobre el tanque es cuando la unidad de pistones axiales se encuentra por encima del nivel de fluido mínimo fuera del tanque. Para evitar que la unidad de pistones axiales se vacíe, en la posición 6 hay que mantener una diferencia de altura hES mín de al menos 25 mm espete la altura de aspiración máxima permitida $h_{S\,m\acute{a}x}=800$ mm Solo se puede colocar una válvula antirretorno en la tubería de drenaje en casos especiales y si se solicita previamente.

Posición de montaje Llenado Purgado 5 L L 6¹⁾ L_1 L_1 $h_{\rm s\ max}$ $h_{t min}$ SB! 7 L_1 L_1 $\boldsymbol{h}_{t \; min}$ 8¹⁾ L L

Montaje en el tanque

Montaje en tanque es cuando la unidad de pistones axiales se encuentra en el tanque por debajo del nivel de fluido hidráulico mínimo. La unidad de pistones axiales se encuentra totalmente por debajo del fluido hidráulico.

Cuando el nivel de fluido mínimo igual o se encuentra por debajo del borde superior de la bomba, consultar el capítulo "Montaje sobre el tanque".

Las unidades de pistones axiales con componentes eléctricos (por ejemplo, variadores eléctricos, sensores) no se pueden montar en un tanque por debajo del nivel de fluido.

Posición de montaje		Purgado	Llenado	
9	L sB viim 4	Sobre la co- nexión L más elevada	Sobre la conexión L abierta o L ₁ automáticamente a través de la posición por debajo del nivel de fluido hidráulico	
101)	SB SB Vimin Vimin	Sobre la conexión L ₁ más elevada	Sobre la co- nexión abier- ta L , L ₁ auto- máticamente a través de la posición por debajo del nivel de flui- do hidráulico	
11	L SB - vim q	Sobre la conexión L₁ más elevada	Sobre la conexión L abierta o L ₁ automáticamente a través de la posición por debajo del nivel de fluido hidráulico	
121)	S I I I I I I I I I I I I I I I I I I I	Sobre la conexión L más elevada	Sobre la conexión L abierta o L ₁ automáticamente a través de la posición por debajo del nivel de fluido hidráulico	

¹⁾ Puesto que en esta posición no es posible un purgado y un llenado completo, la bomba debe purgarse y llenarse antes de su montaje en posición horizontal.

Leyenda	
F	Llenado / purgado de aire
S	Conexión de aspiración
L; L ₁	Conexión de drenaje
SB	Pared apaciguadora (chapa antiolas)
h _{t mín}	Profundidad de inmersión mínima necesaria (200 mm)
h _{mín}	Distancia mínima necesaria a la base del tanque (100 mm)
h _{ES mín}	Altura mínima necesaria para evitar que la unidad de pistones axiales se vacíe (25 mm)
h _{S máx}	Altura de aspiración máxima admisible (800 mm)

Aviso

La conexión **F** forma parte del sistema de tuberías externo y debe proporcionarla el cliente para facilitar el llenado y el purgado.

Indicaciones del proyecto

48

- ► La bomba variable de pistones axiales A10VSO está prevista para su uso en un circuito abierto.
- ► El proyecto, el montaje y la puesta en marcha de la unidad de pistones axiales deben estar a cargo de especialistas calificados.
- Antes de usar la unidad de pistones axiales, lea atentamente las correspondientes instrucciones de uso de forma íntegra. En caso necesario, solicíteselas a Bosch Rexroth
- ► Solicite plano de montaje actualizado antes de definir su construcción.
- ▶ Deben respetarse los datos y avisos especificados.
- ► Pueden producirse desviaciones de las curvas características de la unidad de pistones axiales en función del estado de servicio (presión de servicio, temperatura del fluido hidráulico).
- ► Conservación: Nuestras unidades de pistones axiales se entregan de serie con un medio de conservación para un máximo de 12 meses. Si es necesario un medio de conservación para más tiempo (máximo 24 meses), debe indicarse claramente por escrito en el momento del pedido. Los tiempos de conservación son válidos para condiciones de almacenamiento óptimas, las cuales se encuentran en la ficha técnica 90312 o en las instrucciones de uso.
- ► Conforme a ISO 13849, el producto no se entrega en todas las versiones para garantizar su uso con un funcionamiento seguro. Si necesita características de fiabilidad (por ejemplo, MTTF_d) para la seguridad del funcionamiento, póngase en contacto la persona responsable de Bosch Rexroth.
- ► En caso de usar solenoides eléctricos, dependiendo del control empleado, se pueden generar interferencias electromagnéticas. Los solenoides eléctricos no causan averías electromagnéticas si la alimentación es por corriente continua y su funcionamiento no se ve afectado por averías electromagnéticas.
 - Si la alimentación es por corriente continua modular (por ejemplo, señal PWM), el comportamiento puede ser diferente. El fabricante de la máquina debe comprobar si existe un posible peligro por interferencias electromagnéticas para las personas (por ejemplo, con marcapasos) o para otros componentes.

- ► Los reguladores de presión no son un seguro contra la sobrepresión. En la instalación hidráulica hay que colocar una válvula limitadora de presión.
- ► Conexiones de trabajo:
 - Las conexiones y roscas de sujeción están dimensionadas para la presión máxima especificada. Los fabricantes de máquinas e instalaciones deben encargarse de que los elementos de conexión y tuberías cumplan con los aspectos de seguridad necesarios para las condiciones de aplicación (presión, caudal, fluido hidráulico, temperatura).
 - Las conexiones de presión y función están previstas sólo para el montaje de tuberías hidráulicas.

Indicaciones de seguridad

- Durante el servicio y poco tiempo después del mismo existe peligro de quemadura en la unidad de pistones axiales y principalmente en los solenoides. Prever medidas de seguridad adecuadas (por ejemplo, usar ropa de protección).
- Las partes móviles de los dispositivos de mando y regulación (por ejemplo, pistones de válvulas) puede bloquearse un punto no definido en determinadas circunstancias a causa de la suciedad (por ejemplo, fluido hidráulico sucio, desgaste o restos de suciedad en las piezas). En ese caso, el caudal de fluido hidráulico o la creación del par de la unidad de pistones axiales deja de seguir las indicaciones del operador. El uso de diferentes elementos de filtración (filtración de entrada externa o interna) no evita los fallos, solo reduce los riesgos. El fabricante de las máquinas/instalaciones debe comprobar si para su uso son necesarias medidas auxiliares en la máquina para poner el consumidor accionado en una posición segura (por ejemplo, parada inmediata) y, en caso necesario, para garantizar su correcto traslado.

Bosch Rexroth AG

Mobile Applications An den Kelterwiesen 14 72160 Horb a.N., Germany Tel. +49 7451 92-0 info.ma@boschrexroth.de www.boschrexroth.com © Bosch Rexroth AG 2016. Todos los derechos reservados, también los de disposición, explotación, reproducción, edición, distribución, así como en caso de usos para derechos de propiedad industrial. Los datos indicados sirven sólo para describir el producto. De nuestras especificaciones no puede derivarse ninguna declaración sobre una cierta composición o idoneidad para un cierto fin de empleo. Las especificaciones no liberan al usuario de las propias evaluaciones y verificaciones. Hay que tener en cuenta que nuestros productos están sometidos a un proceso natural de desgaste y envejecimiento.